Library Subscription: Guest

MODELING SOLUTE TRANSPORT IN SATURATED SOIL COLUMN: COUPLING PHYSICAL NONEQUILIBRIUM MODEL AND NONLINEAR FREUNDLICH ISOTHERM

Volume 24, Issue 4, 2021, pp. 19-35
DOI: 10.1615/JPorMedia.2021033301
Get accessGet access

ABSTRACT

Accurate modeling of solute transport in porous media is crucial for remediation of contaminants in soils and aquifers. In the present study, the physical nonequilibrium (PNE) model is used to describe the transport of solutes in porous media. A numerical solution for PNE model is obtained using the finite volume method (FVM) based on the tridiag-onal matrix algorithm (TDMA). The developed program, written in MATLAB, is capable of solving the advection-dispersion equations (ADEs) and the PNE equations coupled with the nonlinear Freundlich isotherm. The numerical model is then used to simulate the experimental breakthrough curves (BTCs) of the naphthalene transport through homogeneous soil column for different initial concentrations. The solute transport parameters (immobile water content, mass transfer coefficient and dispersion coefficient) are estimated using the Levenberg-Marquardt algorithm (LM). Compared to ADE, the PNE model with Freundlich isotherm gives a better description to the breakthrough curves (BTCs) in case of low initial concentrations. The solute transport parameters tend to vary with the initial concentration. A new relation is proposed to calculate reduced variance in case of the nonlinear PNE model.

REFERENCES
  1. Appert-Collin, J.C., Contribution a l'analyse des Risques Lies au Transport d'hydrocarbures Aromatiques Polycycliques dans les Milieux Poreux Naturels: du Systeme Modele a l'echantillon de Sol Pollue, PhD, Institut National Polytechnique de Lorraine, 1999. .

  2. Bear, J., Dynamics of Fluids in Porous Media, New York: Elsevier, 1972. .

  3. Bond, W.J. and Wierenga, P. J., Immobile Water during Solute Transport in Unsaturated Sand Columns, Water Resource Res., vol. 26, no. 10, pp. 2475-2481, 1990. .

  4. Bouredji, H., Bendjaballah-Lalaoui, N., Rennane, S., and Merzougui, A., Predicting Solute Transport Parameters in Saturated Porous Media Using Hybrid Algorithm, Iran. J. Chem. Chem. Eng., 2020. DOI: 10.30492/IJCCE.2020.38103 .

  5. Chen, Y.M., Abriola, L.M., Alvarez, P.J.J., Anid, P.J., and Vogel, T.M., Modeling Transport and Biodegradation of Benzene and Toluene in Sand Aquifer Material: Comparison with Experimental Measurements, Water Resource Res., vol. 28, no. 7, pp. 1833-1847, 1992. .

  6. Clothier, B.E., Kirkham, M.B., and MacLean, J.E., In Situ Measurement of the Effective Transport Volume for Solute Moving through Soil, Soil Sci. Soc. Am. J, vol. 56, no. 3, pp. 733-736, 1992. .

  7. Coats, K.H. and Smith, B.D., Dead-End Pore Volume and Dispersion in Porous Media, SPEJ., vol. 4, no. 1, pp. 73-84, 1964. .

  8. Freeze, R.A. and Cherry, J.A., Groundwater, Englewood Cliffs, New Jersey: Prentice-Hall, 1979. .

  9. Huang, G., Huang, Q., Zhan, H., Chen, J., Xiong, Y., and Feng, S., Modeling Contaminant Transport in Homogeneous Porous Media with Fractional Advection Dispersion Equation, Sci. China Ser. D Earth Sci., vol. 48, pp. 295-302,2005. .

  10. Jaynes, D.B., Logsdon, S.D., and Horton, R., Field Method for Measuring Mobile/Immobile Water Content and Solute Transfer Rate Coefficient, Soil Sci. Soc. Am. J, vol. 59, no. 2, pp. 352-356,1995. .

  11. Leij, F.J. and Bradford, S.A., Combined Physical and Chemical Nonequilibrium Transport Model: Analytical Solution, Moments, and Application to Colloids, J. Contam. Hydrol, vol. 110, nos. 3-4, pp. 87-99, 2009. .

  12. Li, Y. and Ghodrati, M., Preferential Transport of Nitrate through Soil Columns Containing Root Channels, Soil Sci. Soc. Am. J, vol. 58, no. 3, pp. 653-659, 1994. .

  13. Masciopinto, C. and Passarella, G., Mass-Transfer Impact on Solute Mobility in Porous Media: A New Mobile-Immobile Model, J. Contam. Hydrol., vol. 215, pp. 21-28, 2018. .

  14. Padilla, I.Y., Yeh, T.-C.J., and Conklin, M.H., The Effect of Water Content on Solute Transport in Unsaturated Porous Media, Water Resource Res, vol. 35, no. 11, pp. 3303-3313, 1999. .

  15. Pang, L., Close, M., Schneider, D., and Stanton, G., Effect of Pore-Water Velocity on Chemical Non-Equilibrium Transport of Cd, Zn, and Pb in Alluvial Gravel Columns, J. Contam. Hydrol., vol. 57, nos. 3-4, pp. 241-258,2002. .

  16. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York: McGraw-Hill, 1980. .

  17. Perkins, T.K. and Johnston, O.C., A Review of Diffusion and Dispersion in Porous Media, Soc. Petrol. Eng. J, vol. 3, no. 1, pp. 70-84, 1963. .

  18. Roussel, T., Etude Experimentale et Modelisation de la Propagation d'une Onde de Concentration Alcaline Issue d'une Matrice Cimentiere a Travers l'argilite du Site du Laboratoire Meuse/Haute-Marne, PhD, Institut National Polytechnique de Lorraine, 2001. .

  19. Salaices Avila, M.A., Experiment and Modeling of the Competitive Sorption and Transport of Chlorinated Ethenes in Porous Media, Gottingen, Germany: Cuvillier, 2005. .

  20. Sardin, M., Schweich, D., Leij, F.J., and Van Genuchten, M.Th., Modeling the Nonequilibrium Transport of Linearly Interacting Solutes in Porous Media: A Review, Water Resource Res., vol. 27,no. 9, pp. 2287-2307, 1991. .

  21. Selim, H.M. and Ma, L., Physical Non-Equilibrium in Soils: Modeling and Application, Chelsea, Michigan: Ann Arbor Press, 1998. .

  22. Selim, H.M., Transport & Fate of Chemicals in Soils: Principles & Applications, Boca Raton, FL: CRC Press, 2015. .

  23. Semra, S., Dispersion Reactive en Milieu Poreux Naturel, PhD, Institut National Polytechnique de Lorraine, 2003. .

  24. Shahmohammadi-Kalalagh, S., Modeling Contaminant Transport in Saturated Soil Column with the Continuous Time Random Walk, J Porous Media., vol. 18, no. 12, pp. 1181-1186, 2015. .

  25. Shahmohammadi-Kalalagh, S. and Taran, F., Effect of Initial Concentration and Input Flux on Equilibrium and Non-Equilibrium Transport of Zn in Soil Columns, Int. J. Environ. Sci. Technol., vol. 16, pp. 7565-7572, 2019. .

  26. Toride, N., Leij, F.J., and Van Genuchten, M.Th., The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments, Version 2.0, Research Report No. 137,US Salinity Lab, Riverside, CA, 1995. .

  27. Van Genuchten, M.Th. and Wierenga, P. J., Mass Transfer Studies in Sorbing Porous Media: I. Analytical Solutions, Soil Sci. Soc. Am. J, vol. 40, no. 4, pp. 473-480,1976. .

  28. Van Genuchten, M.Th. and Wierenga, P.J., Mass Transfer Studies in Sorbing Porous Media: II. Experimental Evaluation with Tritium (3H2O), Soil Sci. Soc. Am. J, vol. 41, no. 2, pp. 272-277, 1977. .

  29. Van Genuchten, M.Th., Wierenga, P.J., and O'Connor, G.A., Mass Transfer Studies in Sorbing Porous Media: III. Experimental Evaluation with Tritium (3H2O), Soil Sci. Soc. Am. J, vol. 41, no. 2, pp. 278-285, 1977. .

  30. Van Genuchten, M.Th., Non-Equilibrium Transport Parameters from Miscible Displacement Experiments, Research Report No. 119, US Salinity lab, Riverside, CA, 1981. .

  31. Van Genuchten, M.Th. and Cleary, R.W., Movement of Solutes in Soil: Computer Simulated and Laboratory Results, in Soil Chemistry: B. PhysicochemicalModel, G.H. Bolt, Ed., Amsterdam: Elsevier, 1979. .

  32. Villermaux, J., Genie de la Reaction Chimique: Conception et Fonctionnement des Reacteurs, Paris: Tec & Doc-Lavoisier, 1993. .

  33. Zeinali, F., Ghoreyshi, A.A., and Najafpour, G., Removal of Toluene and Dichloromethane from Aqueous Phase by Granular Activated Carbon (GAC), Chem. Eng. Commun., vol. 199, no. 2, pp. 203-220, 2012. .

  34. Zheng, C. andBennet, G.D., Applied Contaminant Transport Modeling: Theory and Practice, New York: Van Nostrand Reinhold, 1995. .

CITED BY
  1. Kamran , Khan Shahzad, Alhazmi Sharifah E., Alotaibi Fahad M., Ferrara Massimiliano, Ahmadian Ali, On the Numerical Approximation of Mobile-Immobile Advection-Dispersion Model of Fractional Order Arising from Solute Transport in Porous Media, Fractal and Fractional, 6, 8, 2022. Crossref

Forthcoming Articles

ON THERMAL CONVECTION IN ROTATING CASSON NANOFLUID PERMEATED WITH SUSPENDED PARTICLES IN A DARCY-BRINKMAN POROUS MEDIUM Pushap Sharma, Deepak Bains, G. C. Rana Effect of Microstructures on Mass Transfer inside a Hierarchically-structured Porous Catalyst Masood Moghaddam, Abbas Abbassi, Jafar Ghazanfarian Insight into the impact of melting heat transfer and MHD on stagnation point flow of tangent hyperbolic fluid over a porous rotating disk Priya Bartwal, Himanshu Upreti, Alok Kumar Pandey Numerical Simulation of 3D Darcy-Forchheimer Hybrid Nanofluid Flow with Heat Source/Sink and Partial Slip Effect across a Spinning Disc Bilal Ali, Sidra Jubair, Md Irfanul Haque Siddiqui Fractal model of solid-liquid two-phase thermal transport characteristics in the rough fracture network shanshan yang, Qiong Sheng, Mingqing Zou, Mengying Wang, Ruike Cui, Shuaiyin Chen, Qian Zheng Application of Artificial Neural Network for Modeling of Motile Microorganism-Enhanced MHD Tangent Hyperbolic Nanofluid across a vertical Slender Stretching Surface Bilal Ali, Shengjun Liu, Hongjuan Liu Estimating the Spreading Rates of Hazardous Materials on Unmodified Cellulose Filter Paper: Implications on Risk Assessment of Transporting Hazardous Materials Heshani Manaweera Wickramage, Pan Lu, Peter Oduor, Jianbang Du ELASTIC INTERACTIONS BETWEEN EQUILIBRIUM PORES/HOLES IN POROUS MEDIA UNDER REMOTE STRESS Kostas Davanas Gravity modulation and its impact on weakly nonlinear bio-thermal convection in a porous layer under rotation: a Ginzburg-Landau model approach Michael Kopp, Vladimir Yanovsky Pore structure and permeability behavior of porous media under in-situ stress and pore pressure: Discrete element method simulation on digital core Jun Yao, Chunqi Wang, Xiaoyu Wang, Zhaoqin Huang, Fugui Liu, Quan Xu, Yongfei Yang Influence of Lorentz forces on forced convection of Nanofluid in a porous lid driven enclosure Yi Man, Mostafa Barzegar Gerdroodbary SUTTERBY NANOFLUID FLOW WITH MICROORGANISMS AROUND A CURVED EXPANDING SURFACE THROUGH A POROUS MEDIUM: THERMAL DIFFUSION AND DIFFUSION THERMO IMPACTS galal Moatimid, Mona Mohamed, Khaled Elagamy CHARACTERISTICS OF FLOW REGIMES IN SPIRAL PACKED BEDS WITH SPHERES Mustafa Yasin Gökaslan, Mustafa Özdemir, Lütfullah Kuddusi Numerical study of the influence of magnetic field and throughflow on the onset of thermo-bio-convection in a Forchheimer‑extended Darcy-Brinkman porous nanofluid layer containing gyrotactic microorganisms Arpan Garg, Y.D. Sharma, Subit K. Jain, Sanjalee Maheshwari A nanofluid couple stress flow due to porous stretching and shrinking sheet with heat transfer A. B. Vishalakshi, U.S. Mahabaleshwar, V. Anitha, Dia Zeidan ROTATING WAVY CYLINDER ON BIOCONVECTION FLOW OF NANOENCAPSULATED PHASE CHANGE MATERIALS IN A FINNED CIRCULAR CYLINDER Noura Alsedais, Sang-Wook Lee, Abdelraheem Aly Porosity Impacts on MHD Casson Fluid past a Shrinking Cylinder with Suction Annuri Shobha, Murugan Mageswari, Aisha M. Alqahtani, Asokan Arulmozhi, Manyala Gangadhar Rao, Sudar Mozhi K, Ilyas Khan CREEPING FLOW OF COUPLE STRESS FLUID OVER A SPHERICAL FIELD ON A SATURATED BIPOROUS MEDIUM Shyamala Sakthivel , Pankaj Shukla, Selvi Ramasamy
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain