Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Journal of Porous Media
IF: 1.752 5-Year IF: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Print: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volume 23, 2020 Volume 22, 2019 Volume 21, 2018 Volume 20, 2017 Volume 19, 2016 Volume 18, 2015 Volume 17, 2014 Volume 16, 2013 Volume 15, 2012 Volume 14, 2011 Volume 13, 2010 Volume 12, 2009 Volume 11, 2008 Volume 10, 2007 Volume 9, 2006 Volume 8, 2005 Volume 7, 2004 Volume 6, 2003 Volume 5, 2002 Volume 4, 2001 Volume 3, 2000 Volume 2, 1999 Volume 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v18.i9.70
pages 907-922

MULTIPLE SLIP EFFECTS ON UNSTEADY MAGNETOHYDRODYNAMIC NANOFLUID TRANSPORT WITH HEAT GENERATION/ABSORPTION EFFECTS IN TEMPERATURE DEPENDENT POROUS MEDIA

Osman Anwar Beg
Gort Engovation-Aerospace, Medical and Energy Engineering, Gabriel's Wing House, 15 Southmere Avenue, Bradford, BD73NU, United Kingdom; Fluid Mechanics, Department of Mechanical and Aeronautical Engineering, Salford University, M54WT, England, United Kingdom
Waqar Khan
Prince Mohammad Bin Fahd University
Mohammed Jashim Uddin
School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; Department of Mathematics, American International University-Bangladesh, Banani, Dhaka 1213, Bangladesh

ABSTRACT

Transient hydromagnetic flow, heat, and mass transfer of a conducting nanofluid in a Darcian porous medium is studied. The heat generation/absorption effect is incorporated based on the dual formulation of Tsai et al. (Tsai, R., Huang, K. H., and Huang, J. S., Flow and Heat Transfer over an Unsteady Stretching Surface with Non-Uniform Heat Source, Int. Commun. Heat Mass Transfer, vol. 35, pp. 1340-1343, 2008), for space and temperature dependence. Multiple slip phenomena are also featured in the model to simulate certain industrial polymer flows where the no-slip wall boundary condition is violated. A 2D unsteady incompressible boundary layer model is developed for water based nanofluid containing two different types of nanoparticles, namely alumina and copper nanoparticles. The resulting partial differential equations with corresponding boundary conditions are rendered into a system of coupled ordinary differential equations via suitable similarity transformations. The nonlinear boundary value problem is then solved with Maple quadrature. Validation of solutions is achieved with previous studies for selected values of Prandtl number and temperature-dependent heat generation/absorption parameter, demonstrating very good correlation. The influence of Richardson number, buoyancy ratio parameter, nanoparticle solid volume fraction, magneto-hydrodynamic body force parameter, Darcy number, unsteadiness parameter, wall transpiration (suction/injection parameter), velocity slip parameter, thermal slip parameter, mass slip parameter, space- and temperature-dependent heat source/sink parameter on velocity, temperature, and concentration distributions are examined. Furthermore the effects of these parameters on skin friction, Nusselt number, and Sherwood number are also analyzed. The present simulations are relevant to magnetohydrodynamic energy devices exploiting nanofluids.


Articles with similar content:

FLOW AND HEAT TRANSFER OF A NANOFLUID BY MIXED CONVECTION WITH NONUNIFORM HEAT SOURCE/SINK AND MAGNETIC FIELD EFFECT: A NUMERICAL APPROACH
Computational Thermal Sciences: An International Journal, Vol.11, 2019, issue 3
M. Trivedi, Md. Sharifuddin Ansari, S. S. Motsa
VISCOUS DISSIPATION EFFECT FOR DOUBLE DIFFUSIVE FREE CONVECTION FLOW ALONG A VERTICAL PLATE EMBEDDED IN A POROUS MEDIUM SATURATED WITH A NANOFLUID
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Annis Aghbari , Djamel Sadaoui , Hamza Ali Agha
INFLUENCE OF THERMAL RADIATION AND THERMOPHORESIS ON VISCOELASTIC FLUID FLOW OVER A VERTICAL CONE
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 2
Sreedhara Rao Gunakala, B. Rushi Kumar, R. Sivaraj, Victor M. Job
MULTIPLE SLIP EFFECTS ON MAGNETOHYDRODYNAMIC BOUNDARY LAYER FLOW OVER A STRETCHING SHEET EMBEDDED IN A POROUS MEDIUM WITH RADIATION AND JOULE HEATING
Special Topics & Reviews in Porous Media: An International Journal, Vol.9, 2018, issue 2
G. Viswanatha Reddy, Kuppala R. Sekhar, Chakravarthula S.K. Raju, Oluwole Daniel Makinde, S. M. Ibrahim
HEAT GENERATION/ABSORPTION AND RADIATION EFFECTS ON HYDROMAGNETIC STAGNATION POINT FLOW OF NANOFLUIDS TOWARD A HEATED POROUS STRETCHING/SHRINKING SHEET WITH SUCTION/INJECTION
Journal of Porous Media, Vol.23, 2020, issue 1
K. M. Kanika, Santosh Chaudhary