Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Critical Reviews™ in Biomedical Engineering
SJR: 0.243 SNIP: 0.376 CiteScore™: 0.79

ISSN Print: 0278-940X
ISSN Online: 1943-619X

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v37.i4-5.50
pages 399-421

Stem Cells for Skin Tissue Engineering and Wound Healing

Ming Chen
The Center for Engineering Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
Melissa Przyborowski
Department of Biomedical Engineering, Rutgers University, New Brunswick, New Jersey, USA
Francois Berthiaume
Department of Biomedical Engineering, Rutgers University, New Brunswick, New Jersey, USA


The tremendous ability of the skin's epidermis to regenerate is due to the presence of epidermal stem cells that continuously produce keratinocytes, which undergo terminal differentiation to a keratinized layer that provides the skin's barrier properties. The ability to control this process in vitro has made it possible to develop various types of tissue-engineered skin grafts, some of which are among the first tissue-engineered products to ever reach the market. In the past 30 years, these products have been applied with some success to the treatment of chronic skin wounds such as diabetic and venous ulcers and deep, acute wounds such as burns. Current technologies remain partially effective in their ability to restore other skin structures, for example, the dermis, which is critical to the overall long-term appearance and function of the skin. As yet, none of these approaches can regenerate skin appendages (e.g. hair follicles and sweat glands). The use of earlier progenitor and stem cells, including embryonic stem cells, is gaining interest in the attempt to overcome such limitations. Furthermore, recent evidence suggests that "adult" stem cells, which are present in the circulation, target areas of injury and likely participate in the wound-healing process. In this paper, we start with an overview of the wound-healing process and current methods used for wound treatment, both conventional and tissue-engineering based. We then review current research on the various types of stem cells used for skin tissue engineering and wound healing, and provide future directions.

Articles with similar content:

Bone Tissue Engineering: Recent Advances and Challenges
Critical Reviews™ in Biomedical Engineering, Vol.40, 2012, issue 5
Syam P. Nukavarapu, Cato T. Laurencin, Ami R. Amini
Human Umbilical Cord–Derived Stem Cells: Isolation, Characterization, Differentiation, and Application in Treating Diabetes
Critical Reviews™ in Biomedical Engineering, Vol.46, 2018, issue 5
Bhawna Chandravanshi, Ramesh R. Bhonde
The Role of Tissue Engineering in Articular Cartilage Repair and Regeneration
Critical Reviews™ in Biomedical Engineering, Vol.37, 2009, issue 1-2
Jerry Hu, Kyriacos A. Athanasiou, Lijie Zhang
Scaffolds for Tissue Engineering of Cartilage
Critical Reviews™ in Eukaryotic Gene Expression, Vol.12, 2002, issue 3
J. M. Bezemer, C. A. van Blitterswijk, J. Riesle, T. B. F. Woodfield, J. S. Pieper
Stem Cells: A New Paradigm in Medical Therapeutics
Journal of Long-Term Effects of Medical Implants, Vol.20, 2010, issue 3
Sadanand D. Mankikar