Library Subscription: Guest
Critical Reviews™ in Biomedical Engineering

Published 6 issues per year

ISSN Print: 0278-940X

ISSN Online: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Development and Challenges of Nanotherapeutic Formulations for Targeting Mitochondrial Cell Death Pathways in Lung and Brain Degenerative Diseases

Volume 48, Issue 3, 2020, pp. 137-152
DOI: 10.1615/CritRevBiomedEng.2020034546
Get accessGet access

ABSTRACT

Mitochondria are among the most dynamic organelles regulating a wide array of cellular processes. They are the cellular hub for oxidative phosphorylation, energy production, and cellular metabolism, and they are important determinants of cell fate, as they control cell death/survival pathways. The mitochondrial network plays a critical role in cellular inflammatory responses, and mitochondria are central in many pathologic conditions such as chronic inflammatory and aging-associated degenerative diseases. Recent advancements in our understanding of the pathogenic pathways and the role of mitochondria therein have identified highly specific therapeutic targets in order to develop personalized nanomedicine approaches for treatment. A wide array of nanoparticle-based formulations has been employed for potential usage in both diagnosing and treating chronic and fatal conditions, with gold nanoparticles and liposomal encapsulation being of particular interest. In this review, we highlight and summarize the advantages and challenges of developing these nanoformulations for targeted and spatiotemporally controlled drug delivery. We discuss the potential of nanotherapy in neoplasms to target the mitochondrial regulated cell death pathways and recent seminal developments in liposomal nanotherapy against chronic inflammatory lung diseases. The need for further development of nanoparticle-based treatment options for neuroinflammatory and neurodegenerative conditions, such as Alzheimer's disease (AD), is also discussed.

REFERENCES
  1. Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K, Webster TJ. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int J Nanomedicine. 2019;14:1633-57. .

  2. Smith RC, Riollano M, Leung A, Hammond PT. Layer-by-layer platform technology for small-molecule delivery. Angew Chem Int Ed Engl. 2009;48(47):8974-7. .

  3. Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 2018; 19(7):1979. .

  4. Mousavi MZ, Chen H-Y, Hou H-S, Chang C-Y-Y, Roffler S, Wei P-K, Cheng J-Y. Label-free detection of rare cell in human blood using gold nano slit surface plasmon resonance. Biosensors (Basel). 2015;5(1):98-117. .

  5. Tomitaka A, Ota S, Nishimoto K, Arami H, Takemura Y, Nair M. Dynamic magnetic characterization and magnetic particle imaging enhancement of magnetic-gold core-shell nanoparticles. Nanoscale. 2019;11(13):6489-96. .

  6. Bahrami B, Hojjat-Farsangi M, Mohammadi H, Anvari E, Ghalamfarsa G, Yousefi M, Jadidi-Niaragh F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol Lett. 2017;190:64-83. .

  7. Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules. 2017;22(9):1445. .

  8. Chen YH, Tsai CY, Huang PY, Chang MY, Cheng PC, Chou CH, Chen DH, Wang CR, Shiau AL, Wu CL. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol Pharm. 2007;4(5):713-22. .

  9. Zhao X, Huang Q, Jin Y. Gold nanorod delivery of LSD1 siRNA induces human mesenchymal stem cell differentiation. Mater Sci Eng C. 2015;54:142-9. .

  10. Pernodet N, Fang X, Sun Y, Bakhtina A, Ramakrishnan A, Sokolov J, Ulman A, Rafailovich M. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small. 2006;2(6):766-73. .

  11. Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bet- tmer J, Llopis J, Sanchez-Gonzalez C. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine. 2018;14(1):1-12. .

  12. Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P, Neun BW, Hall JB, McNeil SE. Interaction of colloidal gold nanoparticles with human blood: Effects on particle size and analysis of plasma protein binding profiles. Nanomedicine. 2009;5(2):106-17. .

  13. Ajnai G, Chiu A, Kan T, Cheng C-C, Tsai T-H, Chang J. Trends of gold nanoparticle-based drug delivery system in cancer therapy. J Exp Clin Med. 2014;6(6):172-8. .

  14. Rudokas M, Najlah M, Alhnan MA, Elhissi A. Liposome delivery systems for inhalation: A critical review high-lighting formulation issues and anticancer applications. Med Princ Pract. 2016;25(Suppl 2):60-72. .

  15. Sanvicens N, Marco MP. Multifunctional nanoparticles-properties and prospects for their use in human medicine. Trends Biotechnol. 2008;26(8):425-33. .

  16. Torchilin VP. Recent advances with liposomes as pharma-ceutical carriers. Nat Rev Drug Discov. 2005;4(2):145-60. .

  17. Rose SJ, Neville ME, Gupta R, Bermudez LE. Delivery of aerosolized liposomal amikacin as a novel approach for the treatment of nontuberculous mycobacteria in an experimental model of pulmonary infection. PLoS One. 2014;9(9):e108703. .

  18. Griffith DE, Eagle G, Thomson R, Aksamit TR, Hasegawa N, Morimoto K, Addrizzo-Harris DJ, O'Donnell AE, Marras TK, Flume PA, Loebinger MR, Morgan L, Codecasa LR, Hill AT, Ruoss SJ, Yim JJ, Ringshausen FC, Field SK, Philley JV, Wallace RJ Jr, van Ingen J, Coulter C, Nezamis J, Winthrop KL. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT). A pro-spective, open-label, randomized study. Am J Respir Crit Care Med. 2018;198(12):1559-69. .

  19. Raphey VR, Henna TK, Nivitha KP, Mufeedha P, Sabu C, Pramod K. Advanced biomedical applications of carbon nanotube. Mater Sci Eng C. 2019;100:616-30. .

  20. Costa PM, Wang JT-W, Morfin J-F, Khanum T, To W, Sosabowski J, Toth E, Al-Jamal KT. Functionalised carbon nanotubes enhance brain delivery of amyloid-targeting Pittsburgh compound B (PiB)-derived ligands. Nanotheranostics. 2018;2(2):168-83. .

  21. Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int J Pharm. 2018;548(1):707-20. .

  22. Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules. 2017;22(9):1401. .

  23. Cagel M, Tesan FC, Bernabeu E, Salgueiro MJ, Zubillaga MB, Moretton MA, Chiappetta DA. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur J Pharm Biopharm. 2017;113:211-28. .

  24. Thomas SC, Harshita, Mishra PK, Talegaonkar S. Ceramic nanoparticles: Fabrication methods and applications in drug delivery. Curr Pharm Des. 2015;21(42):6165-88. .

  25. Burke PJ. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 2017;3(12):857-70. .

  26. Strasser A, Cory S, Adams JM. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J. 2011;30(18):3667-83. .

  27. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49-63. .

  28. Hu Q, Wu D, Chen W, Yan Z, Yan C, He T, Liang Q, Shi Y. Molecular determinants of caspase-9 activation by the Apaf-1 apoptosome. Proc Natl Acad Sci U S A. 2014;111(46):16254-61. .

  29. Chand HS, Harris JF, Tesfaigzi Y. IL-13 in LPS-induced inflammation causes Bcl-2 expression to sustain hyper-plastic mucous cells. Sci Rep. 2018;8(1):436. .

  30. Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL, Dillon CP, Green DR. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell. 2011;44(4): 517-31. .

  31. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death. N Engl J Med. 2009;361(16):1570-83. .

  32. Genentech Biooncology. BCL-2 in Cancer; 2020 [cited 2020 Apr 12]. Available from: https://www.genentechoncology.com/pathways/cancer-tumor-targets/bcl-2.html. .

  33. Abate M, Festa A, Falco M, Lombardi A, Luce A, Grimaldi A, Zappavigna S, Sperlongano P, Irace C, Caraglia M, Misso G. Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol. 2020;98:139-53. .

  34. Otera H, Miyata N, Kuge O, Mihara K. Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling. J Cell Biol. 2016;212(5): 531-44. .

  35. Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, Frezza C, Annaert W, D'Adamio L, Derks C, Dejaegere T, Pellegrini L, D'Hooge R, Scorrano L, De Strooper B. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell. 2006;126(1):163-75. .

  36. Tang C, Han H, Yan M, Zhu S, Liu J, Liu Z, He L, Tan J, Liu Y, Liu H, Sun L, Duan S, Peng Y, Liu F, Yin XM, Zhang Z, Dong Z. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy. 2018;14(5):880-97. .

  37. Wiegman CH, Michaeloudes C, Haji G, Narang P, Clarke CJ, Russell KE, Bao W, Pavlidis S, Barnes PJ, Kanerva J, Bittner A, Rao N, Murphy MP, Kirkham PA, Chung KF, Adcock IM. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2015;136(3):769-80. .

  38. Delbridge AR, Grabow S, Strasser A, Vaux DL. Thirty years of BCL-2: Translating cell death discoveries into novel cancer therapies. Nat Rev Cancer. 2016;16(2): 99-109. .

  39. Beh CW, Seow WY, Wang Y, Zhang Y, Ong ZY, Ee PL, Yang YY. Efficient delivery of Bcl-2-targeted siRNA using cationic polymer nanoparticles: Downregulating mRNA expression level and sensitizing cancer cells to anticancer drug. Biomacromolecules. 2009;10(1):41-8. .

  40. Reddy TL, Garikapati KR, Reddy SG, Reddy BV, Yadav JS, Bhadra U, Bhadra MP. Simultaneous delivery of Paclitaxel and Bcl-2 siRNA via pH-Sensitive liposomal nano-carrier for the synergistic treatment of melanoma. Sci Rep. 2016;6:35223. .

  41. Cui D, Ma J, Liang T, Sun L, Meng L, Liang T, Li Q. Selenium nanoparticles fabricated in laminarin polysaccharides solutions exert their cytotoxicities in HepG2 cells by inhibiting autophagy and promoting apoptosis. Int J Biol Macromol. 2019;137:829-35. .

  42. Mallick A, More P, Syed MM, Basu S. Nanoparticle-mediated mitochondrial damage induces apoptosis in cancer. ACS Appl Mater Interfaces. 2016;8(21):13218-31. .

  43. Haque S, Feeney O, Meeusen E, Boyd BJ, McIntosh MP, Pouton CW, Whittaker M, Kaminskas LM. Local inflammation alters the lung disposition of a drug loaded pegylated liposome after pulmonary dosing to rats. J Controlled Release. 2019;307:32-43. .

  44. Haque S, Whittaker M, McIntosh MP, Pouton CW, Phipps S, Kaminskas LM. A comparison of the lung clearance kinetics of solid lipid nanoparticles and liposomes by following the (3)H-labelled structural lipids after pulmonary delivery in rats. Eur J Pharm Biopharm. 2018;125:1-12. .

  45. Danahay H, Pessotti AD, Coote J, Montgomery BE, Xia D, Wilson A, Yang H, Wang Z, Bevan L, Thomas C, Petit S, London A, LeMotte P, Doelemeyer A, Velez-Reyes GL, Bernasconi P, Fryer CJ, Edwards M, Capodieci P, Chen A, Hild M, Jaffe AB. Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Rep. 2015;10(2):239-52. .

  46. Shaykhiev R. Emerging biology of persistent mucous cell hyperplasia in COPD. Thorax. 2019;74(1):4-6. .

  47. Zuo WL, Yang J, Gomi K, Chao I, Crystal RG, Shaykhiev R. EGF-amphiregulin interplay in airway stem/progenitor cells links the pathogenesis of smoking-induced lesions in the human airway epithelium. Stem Cells. 2017;35(3):824-37. .

  48. Tilley AE, Harvey BG, Heguy A, Hackett NR, Wang R, O'Connor TP, Crystal RG. Down-regulation of the notch pathway in human airway epithelium in association with smoking and chronic obstructive pulmonary disease. Am J Tespir Critical Care Medicine. 2009;179(6):457-66. .

  49. Chand HS, Montano G, Huang X, Randell SH, Mebratu Y, Petersen H, Tesfaigzi Y. A genetic variant of p53 restricts the mucous secretory phenotype by regulating SPDEF and Bcl-2 expression. Nat Commun. 2014;5:5567. .

  50. Chand HS, Mebratu YA, Kuehl PJ, Tesfaigzi Y. Blocking Bcl-2 resolves IL-13-mediated mucous cell hyperplasia in a Bik-dependent manner. J Allergy Clin Immunol. 2017;140(5):1456-9.e9. .

  51. Chand HS, Woldegiorgis Z, Schwalm K, McDonald J, Tesfaigzi Y. Acute inflammation induces insulin-like growth factor-1 to mediate Bcl-2 and Muc5ac expression in airway epithelial cells. Am J Respir Cell Mol Biol. 2012;47(6):784-91. .

  52. Hussain SS, George S, Singh S, Jayant R, Hu CA, Sopori M, Chand HS. A small molecule BH3-mimetic suppresses cigarette smoke-induced mucous expression in airway ep-ithelial cells. Sci Rep. 2018;8(1):13796. .

  53. Mattson MP, Arumugam TV. Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab. 2018;27(6):1176-99. .

  54. Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM. Alzheimer's disease. Lancet. 2016;388(10043):505-17. .

  55. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK. Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction. J Neurosci. 2006;26(35): 9057-68. .

  56. Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer's disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 2019;14:5541-54. .

  57. Stahon KE, Bastian C, Griffith S, Kidd GJ, Brunet S, Baltan S. Age-related changes in axonal and mitochondrial ultrastructure and function in white matter. J Neurosc. 2016;36(39):9990-10001. .

  58. Morozov YM, Datta D, Paspalas CD, Arnsten AFT. Ultrastructural evidence for impaired mitochondrial fission in the aged rhesus monkey dorsolateral prefrontal cortex. Neurobiol Aging. 2017;51:9-18. .

  59. Pandya JD, Grondin R, Yonutas HM, Haghnazar H, Gash DM, Zhang Z, Sullivan PG. Decreased mitochondrial bio-energetics and calcium buffering capacity in the basal ganglia correlates with motor deficits in a nonhuman primate model of aging. Neurobiol Aging. 2015;36(5):1903-13. .

  60. Gibson GE, Starkov A, Blass JP, Ratan RR, Beal MF. Cause and consequence: Mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochim Biophys Acta. 2010;1802(1):122-34. .

  61. Leuner K, Schutt T, Kurz C, Eckert SH, Schiller C, Occhipinti A, Mai S, Jendrach M, Eckert GP, Kruse SE, Palmiter RD, Brandt U, Drose S, Wittig I, Willem M, Haass C, Reichert AS, Muller WE. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid beta formation. Antiox Redox Signal. 2012;16(12):1421-33. .

  62. Manczak M, Calkins MJ, Reddy PH. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: Implications for neuronal damage. Hum Mol Genet. 2011;20(13):2495-509. .

  63. Kukreja L, Kujoth GC, Prolla TA, Van Leuven F, Vassar R. Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer's disease. Mol Neurodegener. 2014;9:16. .

  64. Mathew A, Lindsley TA, Sheridan A, Bhoiwala DL, Hushmendy SF, Yager EJ, Ruggiero EA, Crawford DR. Degraded mitochondrial DNA is a newly identified subtype of the damage associated molecular pattern (DAMP) family and possible trigger of neurodegeneration. J Alzheimers Dis. 2012;30(3):617-27. .

  65. Wilkins HM, Weidling IW, Ji Y, Swerdlow RH. Mito-chondria-derived damage-associated molecular patterns in neurodegeneration. Front Immunol. 2017;8:508-n. .

  66. Edland SD, Silverman JM, Peskind ER, Tsuang D, Wijsman E, Morris JC. Increased risk of dementia in mothers of Alzheimer's disease cases: Evidence for maternal inheritance. Neurology. 1996;47(1):254-6. .

  67. Krishnan KJ, Ratnaike TE, De Gruyter HL, Jaros E, Turnbull DM. Mitochondrial DNA deletions cause the biochemical defect observed in Alzheimer's disease. Neu-robiol Aging. 2012;33(9):2210-4. .

  68. Mihajlica N, Betsholtz C, Hammarlund-Udenaes M. Pharmacokinetics of pericyte involvement in small-molecular drug transport across the blood-brain barrier. Eur J Pharm Sci. 2018;122:77-84. .

  69. Sahni JK, Doggui S, Ali J, Baboota S, Dao L, Ramassamy C. Neurotherapeutic applications of nanoparticles in Alzheimer's disease. J Control Release. 2011;152(2): 208-31. .

  70. Kaushik A, Jayant RD, Bhardwaj V, Nair M. Personalized nanomedicine for CNS diseases. Drug Discov Today. 2018;23(5):1007-15. .

  71. Liu G, Garrett MR, Men P, Zhu X, Perry G, Smith MA. Nanoparticle and other metal chelation therapeutics in Alzheimer disease. Biochim Biophy Acta. 2005;1741(3):246-52. .

  72. Cui Z, Lockman PR, Atwood CS, Hsu CH, Gupte A, Allen DD, Mumper RJ. Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer's and other CNS diseases. Eur J Pharm Biopharm. 2005;59(2):263-72. .

  73. Wilson B, Samanta MK, Santhi K, Kumar KP, Ramasamy M, Suresh B. Chitosan nanoparticles as a new delivery system for the anti-Alzheimer drug tacrine. Nanomedicine. 2010;6(1):144-52. .

  74. Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease. Brain Res. 2008;1200:159-68. .

  75. Wang ZH, Wang ZY, Sun CS, Wang CY, Jiang TY, Wang SL. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Bio- materials. 2010;31(5):908-15. .

  76. Velichkovska M, Surnar B, Nair M, Dhar S, Toborek M. Targeted mitochondrial COQ(IO) delivery attenuates antiretroviral-drug-induced senescence of neural progenitor cells. Mol Pharm. 2019;16(2):724-36. .

  77. Kogan MJ, Bastus NG, Amigo R, Grillo-Bosch D, Araya E, Turiel A, Labarta A, Giralt E, Puntes VF. Nanoparticle-mediated local and remote manipulation of protein aggregation. Nano Lett. 2006;6(1):110-5. .

  78. Vimal SK, Zuo H, Wang Z, Wang H, Long Z, Bhattacharyya S. Self-therapeutic nanoparticle that alters tau protein and ameliorates tauopathy toward a functional nanomedicine to tackle Alzheimer's. Small. 2020;16(16):e1906861. .

  79. Gupta J, Fatima MT, Islam Z, Khan RH, Uversky VN, Salahuddin P. Nanoparticle formulations in the diagnosis and therapy of Alzheimer's disease. Int J Biol Macromol. 2019;130:515-26. .

  80. Kwon HJ, Cha MY, Kim D, Kim DK, Soh M, Shin K, Hyeon T, Mook-Jung I. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer's disease. ACS Nano. 2016;10(2):2860-70. .

  81. Mourtas S, Canovi M, Zona C, Aurilia D, Niarakis A, La Ferla B, Salmona M, Nicotra F, Gobbi M, Antimisiaris SG. Curcumin-decorated nanoliposomes with very high affinity for amyloid-P1-42 peptide. Biomaterials. 2011;32(6):1635-45. .

  82. Mathew A, Fukuda T, Nagaoka Y, Hasumura T, Morimoto H, Yoshida Y, Maekawa T, Venugopal K, Kumar DS. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer's disease. PLoS One. 2012;7(3):e32616. .

  83. Mulik RS, Monkkonen J, Juvonen RO, Mahadik KR, Paradkar AR. ApoE3 mediated poly(butyl) cyanoacrylate nanoparticles containing curcumin: Study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model. Mol Pharm. 2010;7(3):815-25. .

  84. Yin T, Yang L, Liu Y, Zhou X, Sun J, Liu J. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood-brain barrier permeability peptide-B6 peptide for potential use in Alzheimer's disease. Acta Biomater. 2015;25:172-83. .

  85. Burrer CM, Auburn H, Wang X, Luo J, Abulwerdi FA, Nikolovska-Coleska Z, Chan GC. Mcl-1 small-molecule inhibitors encapsulated into nanoparticles exhibit increased killing efficacy towards HCMV-infected monocytes. Antiviral Res. 2017;138:40-6. .

  86. Kumar M, Singh G, Sharma S, Gupta D, Bansal V, Arora V, Bhat M, Srivastava SK, Sapra S, Kharbanda S, Dinda AK, Singh H. Intracellular delivery of peptide cargos using iron oxide based nanoparticles: Studies on antitumor efficacy of a BCL-2 converting peptide, NuBCP-9. Nanoscale. 2014;6(23):14473-83. .

  87. Shi M, Cheng L, Zhang Z, Liu Z, Mao X. Ferroferric oxide nanoparticles induce prosurvival autophagy in human blood cells by modulating the Beclin 1/Bcl-2/VPS34 complex. Int J Nanomedicine. 2015;10:207-16. .

CITED BY
  1. Manevski Marko, Devadoss Dinesh, Long Christopher, Singh Shashi P., Nasser Mohd Wasim, Borchert Glen M., Nair Madhavan N., Rahman Irfan, Sopori Mohan, Chand Hitendra S., Increased Expression of LASI lncRNA Regulates the Cigarette Smoke and COPD Associated Airway Inflammation and Mucous Cell Hyperplasia, Frontiers in Immunology, 13, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain