Library Subscription: Guest
Critical Reviews™ in Biomedical Engineering

Published 6 issues per year

ISSN Print: 0278-940X

ISSN Online: 1943-619X

SJR: 0.262 SNIP: 0.372 CiteScore™:: 2.2 H-Index: 56

Indexed in

Thermal Therapy, Part 2: Hyperthermia Techniques

Volume 34, Issue 6, 2006, pp. 491-542
DOI: 10.1615/CritRevBiomedEng.v34.i6.30
Get accessGet access

ABSTRACT

Hyperthermia, the procedure of raising the temperature of a part of or the whole body above normal for a defined period of time, is applied alone or as an adjunctive with various established cancer treatment modalities such as radiotherapy and chemotherapy. Clinical hyperthermia falls into three broad categories, namely, (1) localized hyperthermia, (2) regional hyperthermia, and (3) whole-body hyperthermia (WBH). Because of the various problems associated with each type of treatment, different heating techniques have evolved. In this article, background information on the biological rationale and current status of technologies concerning heating equipment for the application of hyperthermia to human cancer treatment are provided. The results of combinations of other modalities such as radiotherapy or chemotherapy with hyperthermia as a new treatment strategy are summarized. The article concludes with a discussion of challenges and opportunities for the future.

CITED BY
  1. Jiménez-Lozano Joel, Vacas-Jacques Paulino, Anderson R Rox, Franco Walfre, Selective and localized radiofrequency heating of skin and fat by controlling surface distributions of the applied voltage: analytical study, Physics in Medicine and Biology, 57, 22, 2012. Crossref

  2. Shokrollahi H., Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids, Materials Science and Engineering: C, 33, 5, 2013. Crossref

  3. Kim Eunjung, Lee Kwangyeol, Huh Yong-Min, Haam Seungjoo, Magnetic nanocomplexes and the physiological challenges associated with their use for cancer imaging and therapy, J. Mater. Chem. B, 1, 6, 2013. Crossref

  4. Maestro Laura Martínez, Camarillo Enrique, Sánchez-Gil José A., Rodríguez-Oliveros Rogelio, Ramiro-Bargueño J., Caamaño A. J., Jaque Francisco, Solé José García, Jaque Daniel, Gold nanorods for optimized photothermal therapy: the influence of irradiating in the first and second biological windows, RSC Adv., 4, 96, 2014. Crossref

  5. López-Noriega Adolfo, Ruiz-Hernández Eduardo, Quinlan Elaine, Storm Gert, Hennink Wim E., O'Brien Fergal J., Thermally triggered release of a pro-osteogenic peptide from a functionalized collagen-based scaffold using thermosensitive liposomes, Journal of Controlled Release, 187, 2014. Crossref

  6. Li Xu-hong, Feng Zhi-ming, Ouyang Wei-wei, Xie Xiao-xue, Liao Yu-ping, Tang Jin-tian, Synthesis and characterization of Fe3O4 magnetic nanoparticles and their heating effects under radiofrequency capacitive field, Journal of Central South University of Technology, 17, 6, 2010. Crossref

  7. Hijnen Nicole, Langereis Sander, Grüll Holger, Magnetic resonance guided high-intensity focused ultrasound for image-guided temperature-induced drug delivery, Advanced Drug Delivery Reviews, 72, 2014. Crossref

  8. Guardia Pablo, Riedinger Andreas, Kakwere Hamilton, Gazeau Florence, Pellegrino Teresa, Magnetic Nanoparticles for Magnetic Hyperthermia and Controlled Drug Delivery, in Bio- and Bioinspired Nanomaterials, 2014. Crossref

  9. López-Noriega Adolfo, Hastings Conn L., Ozbakir Burcin, O'Donnell Kathleen E., O'Brien Fergal J., Storm Gert, Hennink Wim E., Duffy Garry P., Ruiz-Hernández Eduardo, Hyperthermia-Induced Drug Delivery from Thermosensitive Liposomes Encapsulated in an Injectable Hydrogel for Local Chemotherapy, Advanced Healthcare Materials, 3, 6, 2014. Crossref

  10. Carrasco Elisa, del Rosal Blanca, Sanz-Rodríguez Francisco, de la Fuente Ángeles Juarranz, Gonzalez Patricia Haro, Rocha Ueslen, Kumar Kagola Upendra, Jacinto Carlos, Solé José García, Jaque Daniel, Intratumoral Thermal Reading During Photo-Thermal Therapy by Multifunctional Fluorescent Nanoparticles, Advanced Functional Materials, 25, 4, 2015. Crossref

  11. Le Renard Pol-Edern, Lortz Rolf, Senatore Carmine, Rapin Jean-Philippe, Buchegger Franz, Petri-Fink Alke, Hofmann Heinrich, Doelker Eric, Jordan Olivier, Magnetic and in vitro heating properties of implants formed in situ from injectable formulations and containing superparamagnetic iron oxide nanoparticles (SPIONs) embedded in silica microparticles for magnetically induced local hyperthermia, Journal of Magnetism and Magnetic Materials, 323, 8, 2011. Crossref

  12. Shutao Wang , Frenkel V., Zderic V., Preliminary optimization of non-destructive high intensity focused ultrasound exposures for hyperthermia applications, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. Crossref

  13. Zmood Ronald, Murugaraj Pandiyan, Tonkin David, Mainwaring David, Thermal modelling of a differential calorimeter for magnetic nanoparticle specific absorption rate measurement, Thermochimica Acta, 624, 2016. Crossref

  14. Kumar Challa S.S.R., Mohammad Faruq, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Advanced Drug Delivery Reviews, 63, 9, 2011. Crossref

  15. Alvarez-Berrios Merlis P., Castillo Amalchi, Merida Fernando, Mendez Janet, Rinaldi Carlos, Torres-Lugo Madeline, Enhanced proteotoxic stress: one of the contributors for hyperthermic potentiation of the proteasome inhibitor bortezomib using magnetic nanoparticles, Biomaterials Science, 3, 2, 2015. Crossref

  16. Shetake Neena G., Kumar Amit, Gaikwad Snehal, Ray Pritha, Desai Sejal, Ningthoujam Raghumani Singh, Vatsa Rajesh Kumar, Pandey Badri N., Magnetic nanoparticle-mediated hyperthermia therapy induces tumour growth inhibition by apoptosis and Hsp90/AKT modulation, International Journal of Hyperthermia, 31, 8, 2015. Crossref

  17. Mohamed M., Borchard G., Jordan O., In situ forming implants for local chemotherapy and hyperthermia of bone tumors, Journal of Drug Delivery Science and Technology, 22, 5, 2012. Crossref

  18. Banu Hussaina, Sethi Dipinder Kaur, Edgar Andre, Sheriff Adhnaan, Rayees Nuthan, Renuka N., Faheem S.M., Premkumar Kumpati, Vasanthakumar Geetha, Doxorubicin loaded polymeric gold nanoparticles targeted to human folate receptor upon laser photothermal therapy potentiates chemotherapy in breast cancer cell lines, Journal of Photochemistry and Photobiology B: Biology, 149, 2015. Crossref

  19. Zhadobov Maxim, Alekseev Stanislav I., Le Dréan Yves, Sauleau Ronan, Fesenko Evgeny E., Millimeter waves as a source of selective heating of skin, Bioelectromagnetics, 36, 6, 2015. Crossref

  20. Electromagnetic Hyperthermia, in Bioeffects and Therapeutic Applications of Electromagnetic Energy, 2007. Crossref

  21. Eynali Samira, Khoei Samideh, Khoee Sepideh, Esmaelbeygi Elaheh, Evaluation of the cytotoxic effects of hyperthermia and 5-fluorouracil-loaded magnetic nanoparticles on human colon cancer cell line HT-29, International Journal of Hyperthermia, 33, 3, 2017. Crossref

  22. Miola Marta, Laviano Francesco, Gerbaldo Roberto, Bruno Matteo, Lombardi Alberto, Cochis Andrea, Rimondini Lia, Verné Enrica, Composite bone cements for hyperthermia: modeling and characterization of magnetic, calorimetric and in vitro heating properties, Ceramics International, 43, 6, 2017. Crossref

  23. Denkbaş Emir Baki, Çelik Ekin, Erdal Ebru, Kavaz Doğa, Akbal Öznur, Kara Göknur, Bayram Cem, Magnetically based nanocarriers in drug delivery, in Nanobiomaterials in Drug Delivery, 2016. Crossref

  24. ElAfandy Rami T., AbuElela Ayman F., Mishra Pawan, Janjua Bilal, Oubei Hassan M., Büttner Ulrich, Majid Mohammed A., Ng Tien Khee, Merzaban Jasmeen S., Ooi Boon S., Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells, Small, 13, 7, 2017. Crossref

  25. Tapeinos Christos, Efthimiadou Eleni K., Boukos Nikos, Kordas George, Sustained release profile of quatro stimuli nanocontainers as a multi sensitive vehicle exploiting cancer characteristics, Colloids and Surfaces B: Biointerfaces, 148, 2016. Crossref

  26. Kumar Dinesh, Rai K.N., A study on thermal damage during hyperthermia treatment based on DPL model for multilayer tissues using finite element Legendre wavelet Galerkin approach, Journal of Thermal Biology, 62, 2016. Crossref

  27. Kumar Piyush, Srivastava Rohit, Nanomedicine for Cancer Therapy, in Nanomedicine for Cancer Therapy, 2017. Crossref

  28. Lin Shueei-Muh, Li Chang-Yu, Analytical solutions of non-Fourier bio-heat conductions for skin subjected to pulsed laser heating, International Journal of Thermal Sciences, 110, 2016. Crossref

  29. Mahmoodi Nosrat O., Ghavidast Atefeh, Amirmahani Najmeh, A comparative study on the nanoparticles for improved drug delivery systems, Journal of Photochemistry and Photobiology B: Biology, 162, 2016. Crossref

  30. del Rosal Blanca, Pérez‐Delgado Alberto, Carrasco Elisa, Jovanović Dragana J., Dramićanin Miroslav D., Dražić Goran, de la Fuente Ángeles Juarranz, Sanz‐Rodriguez Francisco, Jaque Daniel, Neodymium‐Based Stoichiometric Ultrasmall Nanoparticles for Multifunctional Deep‐Tissue Photothermal Therapy, Advanced Optical Materials, 4, 5, 2016. Crossref

  31. Sassaroli E., Li K. C. P., O'Neill B. E., Modeling Focused Ultrasound Exposure for the Optimal Control of Thermal Dose Distribution, The Scientific World Journal, 2012, 2012. Crossref

  32. Deng Zhiting, Xiao Yang, Pan Min, Li Fei, Duan Wanlu, Meng Long, Liu Xin, Yan Fei, Zheng Hairong, Hyperthermia-triggered drug delivery from iRGD-modified temperature-sensitive liposomes enhances the anti-tumor efficacy using high intensity focused ultrasound, Journal of Controlled Release, 243, 2016. Crossref

  33. Rocha Uéslen, Hu Jie, Rodríguez Emma Martín, Vanetsev Alexander S., Rähn Mikhel, Sammelselg Väino, Orlovskii Yurii V., Solé José García, Jaque Daniel, Ortgies Dirk H., Subtissue Imaging and Thermal Monitoring of Gold Nanorods through Joined Encapsulation with Nd-Doped Infrared-Emitting Nanoparticles, Small, 12, 39, 2016. Crossref

  34. Erbes Thalia, Hirschfeld Marc, Waldeck Silvia, Rücker Gerta, Jäger Markus, Willmann Lucas, Kammerer Bernd, Mayer Sebastian, Gitsch Gerald, Stickeler Elmar, Hyperthermia-driven aberrations of secreted microRNAs in breast cancer in vitro, International Journal of Hyperthermia, 32, 6, 2016. Crossref

  35. Abdou Mohamed Mohamed A., Raeesi Vahid, Turner Patricia V., Rebbapragada Anu, Banks Kate, Chan Warren C.W., A versatile plasmonic thermogel for disinfection of antimicrobial resistant bacteria, Biomaterials, 97, 2016. Crossref

  36. Kumar Dinesh, Kumar P., Rai K.N., A study on DPL model of heat transfer in bi-layer tissues during MFH treatment, Computers in Biology and Medicine, 75, 2016. Crossref

  37. Thorat N.D., Bohara R., Yadav H.M., Otari S.V., Pawar S.H., Tofail S.A.M., Multifunctional Magnetic Nanostructures for Cancer Hyperthermia Therapy, in Nanoarchitectonics for Smart Delivery and Drug Targeting, 2016. Crossref

  38. Astefanoaei Iordana, Stancu Alexandru, Chiriac Horia, Numerical simulation of the temperature field in magnetic hyperthermia with Fe-Cr-Nb-B magnetic particles, The European Physical Journal Plus, 132, 2, 2017. Crossref

  39. WANG QING-LIANG, LIU BO, LI XIAO-JIE, HU KUN-PENG, ZHAO KUN, YE XIAO-MING, Inhibition of mTOR promotes hyperthermia sensitivity in SMMC-7721 human hepatocellular carcinoma cell line, Experimental and Therapeutic Medicine, 11, 3, 2016. Crossref

  40. Bu Jiyoon, Lee Tae Hee, Kim In Sik, Cho Young-Ho, Microfluidic-based mechanical phenotyping of cells for the validation of epithelial-to-mesenchymal-like transition caused by insufficient heat treatment, Sensors and Actuators B: Chemical, 244, 2017. Crossref

  41. Cardoso Vanessa Fernandes, Francesko António, Ribeiro Clarisse, Bañobre-López Manuel, Martins Pedro, Lanceros-Mendez Senentxu, Advances in Magnetic Nanoparticles for Biomedical Applications, Advanced Healthcare Materials, 7, 5, 2018. Crossref

  42. Kumar Dinesh, Rai K.N., Numerical simulation of time fractional dual-phase-lag model of heat transfer within skin tissue during thermal therapy, Journal of Thermal Biology, 67, 2017. Crossref

  43. Suriyanto , Ng E. Y. K., Kumar S. D., Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review, BioMedical Engineering OnLine, 16, 1, 2017. Crossref

  44. Opačak-Bernardi Teuta, Ryu Jung Su, Raucher Drazen, Effects of cell penetrating Notch inhibitory peptide conjugated to elastin-like polypeptide on glioblastoma cells, Journal of Drug Targeting, 25, 6, 2017. Crossref

  45. Criado M., Sanz B., Goya G. F., Mijangos C., Hernández R., Magnetically responsive biopolymeric multilayer films for local hyperthermia, Journal of Materials Chemistry B, 5, 43, 2017. Crossref

  46. Manisekaran Ravichandran, Introduction to Nanomedicine and Cancer Therapy, in Design and Evaluation of Plasmonic/Magnetic Au-MFe2O4 (M-Fe/Co/Mn) Core-Shell Nanoparticles Functionalized with Doxorubicin for Cancer Therapeutics, 2018. Crossref

  47. Martinez-Valdez R., Trujillo-Romero C.J., Castellanos L., Gutierrez-Martinez J., Vera-Hernandez A., Ramos A., Leija L., Feasibility of the microwave and ultrasound ablation as alternatives to treat bone tumors, 2017 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), 2017. Crossref

  48. Trujillo-Romero C.J., Rico-Martinez G., Leija-Salas L., Vera-Hernandez A., Gutierrez-Martinez J., Microwave ablation to treat bone tumors by using a double slot antenna: A modelling study, 2017 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), 2017. Crossref

  49. Uliana João Henrique, Sampaio Diego Ronaldo Thomaz, Carneiro Antonio Adilton Oliveira, Pavan Theo Zeferino, Photoacoustic-based thermal image formation and optimization using an evolutionary genetic algorithm, Research on Biomedical Engineering, 34, 2, 2018. Crossref

  50. Ansari Mohammad, Bigham Ashkan, Hassanzadeh Tabrizi Sayed Ali, Abbastabar Ahangar Hossein, Copper-substituted spinel Zn-Mg ferrite nanoparticles as potential heating agents for hyperthermia, Journal of the American Ceramic Society, 101, 8, 2018. Crossref

  51. Habash Riadh W.Y., Therapeutic hyperthermia, in Thermoregulation: From Basic Neuroscience to Clinical Neurology, Part II, 157, 2018. Crossref

  52. Liu Pei-Ying, Miao Zhao-Hua, Li Kai, Yang Huanjie, Zhen Liang, Xu Cheng-Yan, Biocompatible Fe3+–TA coordination complex with high photothermal conversion efficiency for ablation of cancer cells, Colloids and Surfaces B: Biointerfaces, 167, 2018. Crossref

  53. Bigham Ashkan, Foroughi Firoozeh, Motamedi Mehdi, Rafienia Mohammad, Multifunctional nanoporous magnetic zinc silicate-ZnFe2O4 core-shell composite for bone tissue engineering applications, Ceramics International, 44, 10, 2018. Crossref

  54. Dutta Jaideep, Kundu Balaram, Thermal wave propagation in blood perfused tissues under hyperthermia treatment for unique oscillatory heat flux at skin surface and appropriate initial condition, Heat and Mass Transfer, 54, 11, 2018. Crossref

  55. Srivatsan Avinash, Sen Arindam, Cheruku Ravindra R., Missert Joseph R., Durrani Farukh A., Guru Khurshid, Pandey Ravindra K., Whole body and local hyperthermia enhances the photosensitizing efficacy of 3‐[(1′‐hexyloxy)ethyl]‐3‐Devinylpyropheophorbide‐a (HPPH), Lasers in Surgery and Medicine, 50, 5, 2018. Crossref

  56. Kerans Fransiscus, Lungaro Lisa, Azfer Asim, Salter Donald, The Potential of Intrinsically Magnetic Mesenchymal Stem Cells for Tissue Engineering, International Journal of Molecular Sciences, 19, 10, 2018. Crossref

  57. Awojoyogbe Bamidele Omotayo, Dada Michael Oluwaseun, Computational Design of an RF Controlled Theranostic Model for Evaluation of Tissue Biothermal Response, Journal of Medical and Biological Engineering, 38, 6, 2018. Crossref

  58. Shlapa Yu. Yu., Solopan S. A., Belous A. G., Magnetothermic Effect in Core/Shell Nanocomposite (La,Sr)MnO3/SiO2, Theoretical and Experimental Chemistry, 54, 2, 2018. Crossref

  59. El Hajj Diab Darine, Clerc Pascal, Serhan Nizar, Fourmy Daniel, Gigoux Véronique, Combined Treatments of Magnetic Intra-Lysosomal Hyperthermia with Doxorubicin Promotes Synergistic Anti-Tumoral Activity, Nanomaterials, 8, 7, 2018. Crossref

  60. Castellanos-Rivera Luis A., Mandujano-García Edgar A., Ruiz-Morán Antonio, Barrón-Salazar Melany, Morales-Ruiz Benjamín A., Trujillo-Romero Citlalli J., Analysis of the Thermal Distribution Generated by a Thermal Patch to Evaluate Its Feasibility to Treat Patient’s Pain Relief, in VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering, 75, 2020. Crossref

  61. Dutta Jaideep, Kundu Balaram, Exact analysis based on BDLTNE approach for thermal behaviour in living tissues during regional hyperthermia therapy, Acta Mechanica, 230, 8, 2019. Crossref

  62. Baronzio Gianfranco, Baronzio Attilio, Crespi Elisabetta, Freitas Isabel, Effects of Tumor Microenvironment on Hyperthermia, Photodynamic and Nanotherapy, in Cancer Microenvironment and Therapeutic Implications, 2009. Crossref

  63. Su Feng-Xia, Zhao Xu, Dai Cong, Li Yu-Jie, Yang Cheng-Xiong, Yan Xiu-Ping, A multifunctional persistent luminescent nanoprobe for imaging guided dual-stimulus responsive and triple-synergistic therapy of drug resistant tumor cells, Chemical Communications, 55, 36, 2019. Crossref

  64. Farokhnezhad Mohsen, Esmaeilzadeh Mahdi, Graphene coated gold nanoparticles: an emerging class of nanoagents for photothermal therapy applications, Physical Chemistry Chemical Physics, 21, 33, 2019. Crossref

  65. Selmi Marwa, Bin Dukhyil Abdul Aziz, Belmabrouk Hafedh, Numerical Analysis of Human Cancer Therapy Using Microwave Ablation, Applied Sciences, 10, 1, 2019. Crossref

  66. Pereira Gomes Isabela, Aparecida Duarte Jaqueline, Chaves Maia Ana Luiza, Rubello Domenico, Townsend Danyelle M., Branco de Barros André Luís, Leite Elaine Amaral, Thermosensitive Nanosystems Associated with Hyperthermia for Cancer Treatment, Pharmaceuticals, 12, 4, 2019. Crossref

  67. Hadadian Yaser, Azimbagirad Mehran, Navas Elcio A., Pavan Theo Z., A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions, Review of Scientific Instruments, 90, 7, 2019. Crossref

  68. SONGKAITIWONG KITTIPHOT, LOCHAROENRAT KITSAKORN, COMPUTATIONAL ALGORITHM OF TWO PARALLEL ULTRASOUND BEAMS OF 1D CANCER TISSUE MODEL FOR SAFE AND EFFECTIVE HYPERTHERMIA TREATMENT, Journal of Mechanics in Medicine and Biology, 19, 03, 2019. Crossref

  69. Grysa K., Maciąg A., Identifying heat source intensity in treatment of cancerous tumor using therapy based on local hyperthermia – The Trefftz method approachs, Journal of Thermal Biology, 84, 2019. Crossref

  70. Zhu Lifei, Partanen Ari, Talcott Michael R., Gach H. Michael, Greco Suellen C., Henke Lauren E., Contreras Jessika A., Zoberi Imran, Hallahan Dennis E., Chen Hong, Altman Michael B., Feasibility and safety assessment of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated mild hyperthermia in pelvic targets evaluated using an in vivo porcine model, International Journal of Hyperthermia, 36, 1, 2019. Crossref

  71. Düzgün Mustafa Barbaros, Theofilatos Konstantinos, Georgakilas Alexandros G., Pavlopoulou Athanasia, A Bioinformatic Approach for the Identification of Molecular Determinants of Resistance/Sensitivity to Cancer Thermotherapy, Oxidative Medicine and Cellular Longevity, 2019, 2019. Crossref

  72. Dutta Jaideep, Kundu Balaram, Exact Analytical Formulation of Three-Dimensional Pennes Bioheat Model in Regional Hyperthermia with Modified Initial Condition, Journal of The Institution of Engineers (India): Series C, 101, 2, 2020. Crossref

  73. Nijhawan Geeta, Nijhawan Siddharth Sagar, Sethi Minu, Hyperthermia Treatments, in Noble Metal-Metal Oxide Hybrid Nanoparticles, 2019. Crossref

  74. Velasco Martha V., Souza Marina T., Crovace Murilo C., Aparecido de Oliveira Adilson J., Zanotto Edgar D., Bioactive magnetic glass-ceramics for cancer treatment, Biomedical Glasses, 5, 1, 2019. Crossref

  75. Campbell Aleli, Mohl Jonathon E., Gutierrez Denisse A., Varela-Ramirez Armando, Boland Thomas, Thermal Bioprinting Causes Ample Alterations of Expression of LUCAT1, IL6, CCL26, and NRN1L Genes and Massive Phosphorylation of Critical Oncogenic Drug Resistance Pathways in Breast Cancer Cells, Frontiers in Bioengineering and Biotechnology, 8, 2020. Crossref

  76. Elshafiey Ibrahim, Sheta Abdel-Fattah, Nizam Uddin Mubashir Alam, Abdulkawi Wazie M., Malik Waqar A., Adaptive Energy Concentration in Hyperthermia Treatment of Cancer, 2019 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), 2019. Crossref

  77. Dutta Jaideep, Kundu Balaram, Analytical Model for Tri-Dimensional Fourier Bioheat Transfer Encountered in Regional Hyperthermia, in Advances in Mechanical Engineering, 2020. Crossref

  78. Sharma Sunil Kumar, Kumar Dinesh, A Study on Non-Linear DPL Model for Describing Heat Transfer in Skin Tissue during Hyperthermia Treatment, Entropy, 22, 4, 2020. Crossref

  79. Lakhssassi Ahmed, Mellal Idir, Nour Mhamed, Fouzar Youcef, Bougataya Mohammed, Kengne Emmanuel, Improving Human Health: Challenges and Methodology for Controlling Thermal Doses During Cancer Therapeutic Treatment, in Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems, 681, 2021. Crossref

  80. Moradi Somayeh, Mokhtari-Dizaji Manijhe, Ghassemi Fariba, Sheibani Shahab, Asadi Amoli Fahimeh, Increasing the efficiency of the retinoblastoma brachytherapy protocol with ultrasonic hyperthermia and gold nanoparticles: a rabbit model, International Journal of Radiation Biology, 96, 12, 2020. Crossref

  81. Apostolova I.N., Apostolov A.T., Wesselinowa J.M., Microscopic theory of the specific absorption rate for self-controlled magnetic hyperthermia, Journal of Magnetism and Magnetic Materials, 522, 2021. Crossref

  82. Seal Papori, Saikia Dipraj, Borah J. P., Magnetic Nanomaterials and Their Biomedical Applications, in Nanostructured Materials and their Applications, 2021. Crossref

  83. Xu Peng, Liang Feng, <p>Nanomaterial-Based Tumor Photothermal Immunotherapy</p>, International Journal of Nanomedicine, Volume 15, 2020. Crossref

  84. McNamara Karrina, Tofail Syed A.M., Thorat Nanasaheb D., Bauer Joanna, Mulvihill John J.E., Biomedical Applications of Nanoalloys, in Nanoalloys, 2020. Crossref

  85. Languasco Lucas Monzon, Billordo Peres Carlos, Toranzos Victor, Ortiz Guillermo P., Intensificación de Campos Electromagnéticos de Microondas para Tratamientos por Hipertermia [Not available in English], 2020 IEEE Congreso Bienal de Argentina (ARGENCON), 2020. Crossref

  86. Suleman Muhammad, Riaz Samia, Jalil Rashid, A mathematical modeling approach toward magnetic fluid hyperthermia of cancer and unfolding heating mechanism, Journal of Thermal Analysis and Calorimetry, 146, 3, 2021. Crossref

  87. Fatima Hira, Charinpanitkul Tawatchai, Kim Kyo-Seon, Fundamentals to Apply Magnetic Nanoparticles for Hyperthermia Therapy, Nanomaterials, 11, 5, 2021. Crossref

  88. Paul Puja, Chatterjee Sabyasachi, Pramanik Arindam, Karmakar Parimal, Chandra Bhattacharyya Subhash, Kumar Gopinatha Suresh, Thionine Conjugated Gold Nanoparticles Trigger Apoptotic Activity Toward HepG2 Cancer Cell Line, ACS Biomaterials Science & Engineering, 4, 2, 2018. Crossref

  89. Yin Shu, Asakura Yusuke, Recent research progress on mixed valence state tungsten based materials, Tungsten, 1, 1, 2019. Crossref

  90. Osminkina L.A., Gongalsky M.B., Porous silicon in photodynamic and photothermal therapy, in Porous Silicon for Biomedical Applications, 2021. Crossref

  91. Ganguly Sayan, Margel Shlomo, Design of Magnetic Hydrogels for Hyperthermia and Drug Delivery, Polymers, 13, 23, 2021. Crossref

  92. Kaczmarek Katarzyna, Hornowski Tomasz, Kubovčíková Martina, Timko Milan, Koralewski Marceli, Józefczak Arkadiusz, Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles, ACS Applied Materials & Interfaces, 10, 14, 2018. Crossref

  93. Ou Yu-Chuan, Webb Joseph A., Faley Shannon, Shae Daniel, Talbert Eric M., Lin Sharon, Cutright Camden C., Wilson John T., Bellan Leon M., Bardhan Rizia, Gold Nanoantenna-Mediated Photothermal Drug Delivery from Thermosensitive Liposomes in Breast Cancer, ACS Omega, 1, 2, 2016. Crossref

  94. Khantamat Orawan, Li Chien-Hung, Yu Fei, Jamison Andrew C., Shih Wei-Chuan, Cai Chengzhi, Lee T. Randall, Gold Nanoshell-Decorated Silicone Surfaces for the Near-Infrared (NIR) Photothermal Destruction of the Pathogenic Bacterium E. faecalis, ACS Applied Materials & Interfaces, 7, 7, 2015. Crossref

  95. Ashour Amira S., Guo Yanhui, Mohamed Waleed S., Introduction, in Thermal Ablation Therapy, 2021. Crossref

  96. Liu Xin, Xie Zhuo, Shi Wei, He Zi, Liu Yang, Su Huling, Sun Yanan, Ge Dongtao, Polynorepinephrine Nanoparticles: A Novel Photothermal Nanoagent for Chemo-Photothermal Cancer Therapy, ACS Applied Materials & Interfaces, 11, 22, 2019. Crossref

  97. Santos Olavo, Cancino-Bernardi Juliana, Pincela Lins Paula Maria, Sampaio Diego, Pavan Theo, Zucolotto Valtencir, Near-Infrared Photoactive Theragnostic Gold Nanoflowers for Photoacoustic Imaging and Hyperthermia, ACS Applied Bio Materials, 4, 9, 2021. Crossref

  98. Lim Eun-Kyung, Kim Taekhoon, Paik Soonmyung, Haam Seungjoo, Huh Yong-Min, Lee Kwangyeol, Nanomaterials for Theranostics: Recent Advances and Future Challenges, Chemical Reviews, 115, 1, 2015. Crossref

  99. da Silva Nilton Pereira, Varon Leonardo Antonio Bermeo, da Costa José Mir Justino, Orlande Helcio Rangel Barreto, Monte Carlo parameter estimation and direct simulation of in vitro hyperthermia-chemotherapy experiment, Numerical Heat Transfer, Part A: Applications, 80, 5, 2021. Crossref

  100. Farokhnezhad Mohsen, Esmaeilzadeh Mahdi, Optical and Photothermal Properties of Graphene Coated Au–Ag Hollow Nanoshells: A Modeling for Efficient Photothermal Therapy, The Journal of Physical Chemistry C, 123, 47, 2019. Crossref

  101. Li Shu‐Lan, Jiang Peng, Jiang Feng‐Lei, Liu Yi, Recent Advances in Nanomaterial‐Based Nanoplatforms for Chemodynamic Cancer Therapy, Advanced Functional Materials, 31, 22, 2021. Crossref

  102. Priester Marjolein I., Curto Sergio, van Rhoon Gerard C., ten Hagen Timo L. M., External Basic Hyperthermia Devices for Preclinical Studies in Small Animals, Cancers, 13, 18, 2021. Crossref

  103. Monteserín Maria, Larumbe Silvia, Martínez Alejandro V., Burgui Saioa, Francisco Martín L., Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications, Journal of Nanoscience and Nanotechnology, 21, 5, 2021. Crossref

  104. Dutta Jaideep, Kundu Balaram, An improved analytical model for heat flow in cancerous tumours to avoid thermal injuries during hyperthermia, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235, 5, 2021. Crossref

  105. Wang Shutao, Zderic Vesna, Frenkel Victor, Extracorporeal, low-energy focused ultrasound for noninvasive and nondestructive targeted hyperthermia, Future Oncology, 6, 9, 2010. Crossref

  106. Amaya Clarissa, Kurisetty Vittal, Stiles Jessica, Nyakeriga Alice M, Arumugam Arunkumar, Lakshmanaswamy Rajkumar, Botez Cristian E, Mitchell Dianne C, Bryan Brad A, A genomics approach to identify susceptibilities of breast cancer cells to “fever-range” hyperthermia, BMC Cancer, 14, 1, 2014. Crossref

  107. Mohammad Faruq, Balaji Gopalan, Weber Andrew, Uppu Rao M., Kumar Challa S. S. R., Influence of Gold Nanoshell on Hyperthermia of Superparamagnetic Iron Oxide Nanoparticles, The Journal of Physical Chemistry C, 114, 45, 2010. Crossref

  108. Hu Qinglian, Huang Zemin, Duan Yukun, Fu Zhengwei, Bin Liu , Reprogramming Tumor Microenvironment with Photothermal Therapy, Bioconjugate Chemistry, 31, 5, 2020. Crossref

  109. Kumari Sangeeta, Sharma Nilesh, Sahi Shivendra V., Advances in Cancer Therapeutics: Conventional Thermal Therapy to Nanotechnology-Based Photothermal Therapy, Pharmaceutics, 13, 8, 2021. Crossref

  110. Priester Marjolein I., Curto Sergio, Seynhaeve Ann L. B., Perdomo Anderson Cruz, Amin Mohamadreza, Agnass Pierre, Salimibani Milad, Faridi Pegah, Prakash Punit, van Rhoon Gerard C., ten Hagen Timo L. M., Preclinical Studies in Small Animals for Advanced Drug Delivery Using Hyperthermia and Intravital Microscopy, Cancers, 13, 20, 2021. Crossref

  111. Dutta Jaideep, Kundu Balaram, Hybrid analytical models to estimate non-equilibrium temperatures in live-tissues based on appropriate initial thermal-field and non-invasive therapeutic heating, Journal of Applied Physics, 129, 10, 2021. Crossref

  112. Kaushik Swati, Thomas Jijo, Panwar Vineeta, Ali Hasan, Chopra Vianni, Sharma Anjana, Tomar Ruchi, Ghosh Deepa, In Situ Biosynthesized Superparamagnetic Iron Oxide Nanoparticles (SPIONS) Induce Efficient Hyperthermia in Cancer Cells, ACS Applied Bio Materials, 3, 2, 2020. Crossref

  113. Ryu Jung Su, Kuna Marija, Raucher Drazen, Penetrating the cell membrane, thermal targeting and novel anticancer drugs: the development of thermally targeted, elastin-like polypeptide cancer therapeutics, Therapeutic Delivery, 5, 4, 2014. Crossref

  114. Dai W.B., Li H., Chen Y., Fan Y.M., Shen F., Multifunctional up/down-conversion luminescence of core/shell nanocomposite for self-monitored heating and fluorescence imaging, Journal of Luminescence, 234, 2021. Crossref

  115. Xu Di, Tang Wen-Juan, Zhu Yi-Zhi, Liu Zhen, Yang Kai, Liang Ming-Xing, Chen Xiu, Wu Yang, Tang Jin-Hai, Zhang Wei, Hyperthermia promotes exosome secretion by regulating Rab7b while increasing drug sensitivity in adriamycin-resistant breast cancer, International Journal of Hyperthermia, 39, 1, 2022. Crossref

  116. Rabienejhad Mohammad Javad, Mazaheri Azardokht, Davoudi-Darareh Mahdi, Design and optimization of nano-antenna for thermal ablation of liver cancer cells, Chinese Physics B, 30, 4, 2021. Crossref

  117. Ganjali Monireh, Ganjali Mansoureh, Adib Sereshki Mohammad Mahdi, Ahmadinasab Navid, Ghalandarzadeh Arash, Aljabali Alaa A.A., Barhoum Ahmed, Bionanomaterials for cancer therapy, in Bionanotechnology : Emerging Applications of Bionanomaterials, 2022. Crossref

  118. Chandekar Kamlesh V., Shkir Mohd., Khan Aslam, AlFaify S., Novel magnetic materials preparation, characterizations and their applications, in Fundamentals and Industrial Applications of Magnetic Nanoparticles, 2022. Crossref

  119. Sharma Nitika, Singh Hari Shankar, Khanna Rajesh, Kaur Amanpreet, Agarwal Mayank, Simulation Study of Lens Applicator for Hyperthermia Treatment, 2021 IEEE Indian Conference on Antennas and Propagation (InCAP), 2021. Crossref

  120. Cao Yuanyuan, Ren Quanzhong, Hao Rongzhang, Sun Zhiwei, Innovative strategies to boost photothermal therapy at mild temperature mediated by functional nanomaterials, Materials & Design, 214, 2022. Crossref

  121. Abbas Ghulam, Maqbool Saba, Shahzad Muhammad Khuram, Afzaal Muhammad, Daud Muhammad Usama, Fatima Nazma Goher, Ghuffar Abdul, Analysis of gold nanospheres, nano ellipsoids, nanorods, and effect of core–shell structures for hyperthermia treatment, RSC Advances, 12, 15, 2022. Crossref

  122. Sharifi Esmaeel, Bigham Ashkan, Yousefiasl Satar, Trovato Maria, Ghomi Matineh, Esmaeili Yasaman, Samadi Pouria, Zarrabi Ali, Ashrafizadeh Milad, Sharifi Shokrollah, Sartorius Rossella, Dabbagh Moghaddam Farnaz, Maleki Aziz, Song Hao, Agarwal Tarun, Maiti Tapas Kumar, Nikfarjam Nasser, Burvill Colin, Mattoli Virgilio, Raucci Maria Grazia, Zheng Kai, Boccaccini Aldo R., Ambrosio Luigi, Makvandi Pooyan, Mesoporous Bioactive Glasses in Cancer Diagnosis and Therapy: Stimuli‐Responsive, Toxicity, Immunogenicity, and Clinical Translation, Advanced Science, 9, 2, 2022. Crossref

  123. Theriault C., Paetzell E., Chandrasekar R., Barkey C., Oni Y., Soboyejo W.O., An in-vitro study of the effects of temperature on breast cancer cells: Experiments and models, Materials Science and Engineering: C, 32, 8, 2012. Crossref

  124. Kumari Tejaswini, Singh S. K., A numerical study of space‐fractional three‐phase‐lag bioheat transfer model during thermal therapy, Heat Transfer, 51, 1, 2022. Crossref

  125. Sharma Nitika, Singh Hari Shankar, Khanna Rajesh, Kaur Amanpreet, Agarwal Mayank, Development of deeply focused microwave lens applicator for efficient hyperthermia treatment, Optik, 259, 2022. Crossref

  126. Jagminas Arūnas, Mikalauskaitė Agnė, Functionalization of Iron Oxide‐Based Magnetic Nanoparticles with Gold Shells, in Photoenergy and Thin Film Materials, 2019. Crossref

  127. Prantner Michael, Parspour Nejila, Heating Power of Millimeter-Sized Implanted Coils for Tumor Ablation: Numerical-Analytic Analysis and Optimization, IEEE Access, 10, 2022. Crossref

  128. Ozdemir Fatma, Evans Iain, Rankin Kenneth S., Bretcanu Oana, Preliminary evaluation of the in vitro biocompatibility of magnetic bone cement composites, Open Ceramics, 7, 2021. Crossref

  129. Alqarni Sondos Abdullah, Willmore William G., Albert Jacques, Smelser Christopher W., Self-monitored and optically powered fiber-optic device for localized hyperthermia and controlled cell death in vitro, Applied Optics, 60, 8, 2021. Crossref

  130. Sannyal Mridul, Mukaddes Abul Mukid Mohammad, Rahman Md. Matiar, Mithu M. A. H., Analysis of the effect of external heating in the human tissue: A finite element approach, Polish Journal of Medical Physics and Engineering, 26, 4, 2020. Crossref

  131. Kumar Dinesh, Singh Surjan, Rai K. N., Analysis of classical Fourier, SPL and DPL heat transfer model in biological tissues in presence of metabolic and external heat source, Heat and Mass Transfer, 52, 6, 2016. Crossref

  132. Danewalia S.S., Singh K., Bioactive glasses and glass–ceramics for hyperthermia treatment of cancer: state-of-art, challenges, and future perspectives, Materials Today Bio, 10, 2021. Crossref

  133. Hossain Md Imran, Nanda Sitansu Sekhar, Selvan Subramanian Tamil, Yi Dong Kee, Recent Insights into NIR-Light-Responsive Materials for Photothermal Cell Treatments, Nanomaterials, 12, 19, 2022. Crossref

  134. Aram Elham, Moeni Masome, Abedizadeh Roya, Sabour Davood, Sadeghi-Abandansari Hamid, Gardy Jabbar, Hassanpour Ali, Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects, Nanomaterials, 12, 20, 2022. Crossref

  135. Kukut Hatipoglu Manolya, Akkus Sut Pinar, Synthesis and Biological Use of Nanomaterials, in Progress in Nanoscale and Low-Dimensional Materials and Devices, 144, 2022. Crossref

  136. Sharma Nitika, Kaur Amanpreet, Khanna Rajesh, Singh Hari Shankar, Agarwal Mayank, Design and development of a double spiral antenna with an artificial magnetic conductor structure for hyperthermia treatment , International Journal of RF and Microwave Computer-Aided Engineering, 32, 12, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain