Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Uncertainty Quantification
IF: 4.911 5-Year IF: 3.179 SJR: 1.008 SNIP: 0.983 CiteScore™: 5.2

ISSN Print: 2152-5080
ISSN Online: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2017019550
pages 335-353

ON BERNOULLI'S FREE BOUNDARY PROBLEM WITH A RANDOM BOUNDARY

M. Dambrine
Université de Pau et des Pays de l'Adour, IPRA-LMA, UMR CNRS 5142 Avenue de l'université, 64000 Pau, France
Helmut Harbrecht
Universität Basel, Departement Mathematik und Informatik, Spiegelgasse 1, 4051 Basel, Switzerland
M. D. Peters
Universität Basel, Departement Mathematik und Informatik, Spiegelgasse 1, 4051 Basel, Switzerland
B. Puig
Université de Pau et des Pays de l'Adour, IPRA-LMA, UMR CNRS 5142 Avenue de l'université, 64000 Pau, France

ABSTRACT

This article is dedicated to the solution of Bernoulli's exterior free boundary problem in the situation of a random interior boundary. We provide the theoretical background that ensures the well-posedness of the problem under consideration and describe two different frameworks to define the expectation and the deviation of the resulting annular domain. The first approach is based on the Vorob'ev expectation, which can be defined for arbitrary sets. The second approach is based on the particular parametrization. In order to compare these approaches, we present analytical examples for the case of a circular interior boundary. Additionally, numerical experiments are performed for more general geometric configurations. For the numerical approximation of the expectation and the deviation, we propose a sampling method like the Monte Carlo or the quasi-Monte Carlo quadrature. Each particular realization of the free boundary is then computed by the trial method, which is a fixed-point-like iteration for the solution of Bernoulli's free boundary problem.


Articles with similar content:

Perturbation Method in Problems of Linear Matrix Regression
Journal of Automation and Information Sciences, Vol.52, 2020, issue 1
Petr N. Zinko , Taras P. Zinko , Alexander G. Nakonechnyi, Grigoriy I. Kudin
A FULLY ADAPTIVE INTERPOLATED STOCHASTIC SAMPLING METHOD FOR LINEAR RANDOM PDES
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 3
Johannes Neumann, John Schoenmakers, Martin Eigel, Felix Anker, Christian Bayer
MINIMAL SPARSE SAMPLING FOR FOURIER-POLYNOMIAL CHAOS IN ACOUSTIC SCATTERING
International Journal for Uncertainty Quantification, Vol.5, 2015, issue 1
Roger M. Oba
A GENERALIZED COORDINATES APPROACH FOR THE SOLUTION OF INVERSE HEAT CONDUCTION PROBLEMS
International Heat Transfer Conference 11, Vol.19, 1998, issue
M. N. Ozisik, HELCIO ORLANDE, Jose P. Alencar Jr.
A FICTITIOUS SOURCE METHOD FOR A MULTIFREQUENCY ACOUSTIC SOURCE OVER GROUND WITH VARIABLE IMPEDANCE
International Journal for Multiscale Computational Engineering, Vol.17, 2019, issue 6
Dan Givoli, Y. Kamoun