Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Uncertainty Quantification

Impact factor: 1.000

ISSN Print: 2152-5080
ISSN Online: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.v1.i3.10
pages 189-201

A STOCHASTIC FINITE-ELEMENT METHOD FOR TRANSFORMED NORMAL RANDOM PARAMETER FIELDS

Carsten Proppe
Institute of Engineering Mechanics, Karlsruhe Institute of Technology, Germany

ABSTRACT

Transformed normal random fields are convenient models, e.g., for random material property fields obtained from microstructure analysis. In the context of the stochastic finite-element (FE) method, discretization of non-normal random fields by polynomial chaos expansions has been frequently employed. This introduces a non-linear relationship between the system matrix and normal random variables. For transformed normal random fields, the truncated Karhunen-Loeve expansion of the transformed field is introduced into the stochastic FE formulation. This leads to a linear dependence of the system matrix on non-normal random variables. These non-normal random variables are then utilized to represent the discretized solution of the stochastic boundary value problem. Introduction of the approximations into the variational formulation of the stochastic boundary value problem and application of a collocation scheme yields a nonintrusive algorithm that allows coupling of reliability estimation procedures and existing FE solvers.