Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Uncertainty Quantification

Impact factor: 1.000

ISSN Print: 2152-5080
ISSN Online: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2016017194
pages 229-244

STOCHASTIC SAMPLING BASED BAYESIAN MODEL UPDATING WITH INCOMPLETE MODAL DATA

Sahil Bansal
Thapar Institute of Engineering and Technology, Patiala
Sai Hung Cheung
School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

ABSTRACT

In this paper, we are interested in model updating of a linear dynamic system based on incomplete modal data including modal frequencies, damping ratios, and partial mode shapes of some of the dominant modes. To quantify the uncertainties and plausibility of the model parameters, a Bayesian approach is developed. The mass and stiffness matrices in the identification model are represented as a linear sum of the contribution of the corresponding mass and stiffness matrices from the individual prescribed substructures. The damping matrix is represented as a sum of the contribution from individual substructures in the case of viscous damping, in terms of mass and stiffness matrices in the case of classical damping (Caughey damping), or a combination of the viscous and classical damping. A Metropolis-within-Gibbs sampling based algorithm is proposed that allows for an efficient sampling from the posterior probability distribution. The effectiveness and efficiency of the proposed method are illustrated by numerical examples with complex modes.