Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Uncertainty Quantification
IF: 0.967 5-Year IF: 1.301 SJR: 0.531 SNIP: 0.8 CiteScore™: 1.52

ISSN Print: 2152-5080
ISSN Online: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2015010941
pages 21-48

A MIXED UNCERTAINTY QUANTIFICATION APPROACH USING EVIDENCE THEORY AND STOCHASTIC EXPANSIONS

Harsheel Shah
Aerospace Simulations Laboratory, Missouri University of Science & Technology, Rolla, Missouri 65409, USA
Serhat Hosder
Aerospace Simulations Laboratory, Department of Mechanical and Aerospace Engineering, 290B Toomey Hall, Missouri University of Science and Technology, Rolla, Missouri 65409-0500, USA
Tyler Winter
M4 Engineering Inc., Long Beach, California, 90807, USA

ABSTRACT

Uncertainty quantification (UQ) is the process of quantitative characterization and propagation of input uncertainties to the response measure of interest in experimental and computational models. The input uncertainties in computational models can be either aleatory, i.e., irreducible inherent variations, or epistemic, i.e., reducible variability which arises from lack of knowledge. Previously, it has been shown that Dempster Shafer theory of evidence (DSTE) can be applied to model epistemic uncertainty in case of uncertainty information coming from multiple sources. The objective of this paper is to model and propagate mixed uncertainty (aleatory and epistemic) using DSTE. In specific, the aleatory variables are modeled as Dempster Shafer structures by discretizing them into sets of intervals according to their respective probability distributions. In order to avoid excessive computational cost associated with large scale applications, a stochastic response surface based on point-collocation non-intrusive polynomial chaos has been implemented as the surrogate model for the response. A convergence study for accurate representation of aleatory uncertainty in terms of minimum number of subintervals required is presented. The mixed UQ approach is demonstrated on a numerical example and high fidelity computational fluid dynamics study of transonic flow over RAE 2822 airfoil.