Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Uncertainty Quantification

Impact factor: 1.000

ISSN Print: 2152-5080
ISSN Online: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2011003306
pages 1-23

POLYNOMIAL CHAOS FOR SEMIEXPLICIT DIFFERENTIAL ALGEBRAIC EQUATIONS OF INDEX 1

Roland Pulch
Department of Mathematics and Computer Science, Ernst-Moritz-Arndt-Universitat Greifswald, Walther-Rathenau-Strasse 47, D-17487 Greifswald, Germany

ABSTRACT

Mathematical modeling of technical applications often yields systems of differential algebraic equations. Uncertainties of physical parameters can be considered by the introduction of random variables. A corresponding uncertainty quantification requires one to solve the stochastic model. We focus on semiexplicit systems of nonlinear differential algebraic equations with index 1. The stochastic model is solved using the expansion of the generalised polynomial chaos. We investigate both the stochastic collocation technique and the stochastic Galerkin method to determine the unknown coefficient functions. In particular, we analyze the index of the larger coupled systems, which result from the stochastic Galerkin method. Numerical simulations of test examples are presented, where the two approaches are compared with respect to their efficiency.