Library Subscription: Guest
International Journal for Uncertainty Quantification

Published 6 issues per year

ISSN Print: 2152-5080

ISSN Online: 2152-5099

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.9 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.5 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.0007 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.5 SJR: 0.584 SNIP: 0.676 CiteScore™:: 3 H-Index: 25

Indexed in

ISOGEOMETRIC METHODS FOR KARHUNEN-LOEVE REPRESENTATION OF RANDOM FIELDS ON ARBITRARY MULTIPATCH DOMAINS

Volume 11, Issue 3, 2021, pp. 27-57
DOI: 10.1615/Int.J.UncertaintyQuantification.2020035185
Get accessGet access

ABSTRACT

This paper introduces isogeometric Galerkin and collocation methods for solving the Fredholm integral eigenvalue problem on arbitrary multipatch domains, delivering the Karhunen-Loève expansion for random field discretization. In both methods, the unknown eigenfunctions are projected onto concomitant finite-dimensional approximation spaces, where nonuniform rational B-splines and analysis-suitable T-splines reside. In the context of isogeometric analysis, the geometry is modeled precisely, and identical basis functions with significant approximating power are employed for modeling the geometry and constructing the approximation spaces. Numerical analyses of two- and three-dimensional engineering problems indicate that the Galerkin- and collocation-derived eigensolutions are both convergent and accurate. However, the collocation method, by eliminating one d-dimensional domain integration informing the system matrices, produces eigensolutions markedly more economically than the Galerkin method. Highly effective in large-scale applications, the isogeometric collocation method imparts a tremendous boost to computational expediency. As a result, subsequent uncertainty quantification analysis of complex engineering structures requiring multipatch geometry representation can now be performed using the proposed methods for random field discretization.

REFERENCES
  1. Karhunen, K., Uber Lineare Methoden in Der Wahrscheinlichkeitsrechnung, Ann. Acad. Sci. Fenn. Ser. A., 37:3-79, 1947.

  2. Loeve, M., Probability Theory, Vol. II, New York: Springer, 1977.

  3. Stefanou, G. and Papadrakakis, M., Assessment of Spectral Representation and Karhunen-Loeve Expansion Methods for the Simulation of Gaussian Stochastic Fields, Comput. Methods Appl. Mech. Eng., 196:2465-2477, 2007.

  4. Betz, W., Papaioannou, I., and Straub, D., Numerical Methods for the Discretization of Random Fields by Means of the Karhunen-Loeve Expansion, Comput. Methods Appl. Mech. Eng., 271:109-129, 2014.

  5. Huang, S.P., Quek, S.T., and Phoon, K.K., Convergence Study of the Truncated Karhunen-Loeve Expansion for Simulation of Stochastic Processes, Int. J. Numer. Methods Eng., 52:1029-1043, 2001.

  6. Fredholm, E.I., Sur Une Classe d'Equations Fonctionnelles, Acta Math., 27:365-390, 1903.

  7. Atkinson, K., The Numerical Solution of Integral Equations of the Second Kind, Cambridge: Cambridge University Press, 1997.

  8. Schwab, C. and Todor, R.A., Karhunen-Loeve Approximation of Random Fields by Generalized Fast Multipole Methods, J. Comput. Phys, 217:100-122, 2006.

  9. Khoromskij, B.N., Litvinenko, A., and Matthies, H.G., Application of Hierarchical Matrices for Computing the Karhunen-Loeve Expansion, Comput., 84:49-67, 2009.

  10. Hughes, T. J.R., Cottrell, J.A., and Bazilevs, Y., Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement, Comput. Methods Appl. Mech. Eng., 194:4135-4195, 2005.

  11. Cottrell, J.A., Hughes, T.J.R., andBazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA, New York: John Wiley & Sons, 2009.

  12. Sederberg, T.W., Zheng, J., Bakenov, A., andNasri, A., T-Splines and T-NURCCs, ACM Trans. Graph, 22(3):477-484,2003.

  13. Urick, B., Marussig, B., Cohen, E., Crawford, R.H., Hughes, T.J.R., and Riesenfeld, R.F., Watertight Boolean Operations: A Framework for Creating CAD-Compatible Gap-Free Editable Solid Models, Comput.-AidedDes., 115:147-160,2019.

  14. Sederberg, T.W., Finnigan, G.T., Li, X., and Lin, H., Watertight Trimmed NURBS, ACM Trans. Graph, 27(3):79-1-79-8, 2008.

  15. Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A., and Sederberg, T.W., Isogeometric Analysis Using T-Splines, Comput. Methods Appl. Mech. Eng, 199:229-263,2010.

  16. Dorfel, M.R., Juttler, B., and Simeon, B., Adaptive Isogeometric Analysis by Local H-Refinement with T-Splines, Comput. Methods Appl. Mech. Eng., 199:264-275, 2010.

  17. Scott, M.A., Li, X., Sederberg, T.W., and Hughes, T.J.R., Local Refinement of Analysis-Suitable T-Splines, Comput. Methods Appl. Mech. Eng., 213-216:206-222, 2012.

  18. Buffa, A., Cho, D., and Sangalli, G., Linear Independence of the T-Spline Blending Functions Associated with Some Particular T-Meshes, Comput. Methods Appl. Mech. Eng., 199:1437-1445,2010.

  19. Li, X., Zheng, J., Sederberg, T.W., Hughes, T.J.R., and Scott, M.A., On Linear Independence of T-Spline Blending Functions, Comput. Aided Geom. Des, 29:63-76,2012.

  20. da Veiga, L., Buffa, A., Sangalli, G., and Vazquez, R., Analysis-Suitable T-Splines of Arbitrary Degree: Definition, Linear Independence, and Approximation Properties, Math. Models Methods Appl. Sci., 23(11):1979-2003,2013.

  21. Scott, M.A., Borden, M.J., Verhoosel, C.V., Sederberg, T.W., and Hughes, T.J.R., Isogeometric Finite Element Data Structures Based on Bezier Extraction of T-Splines, Int. J. Numer. Methods Eng., 88:126-156,2011.

  22. May, S., Vignollet, J., and de Borst, R., The Role of the Bezier Extraction Operator for T-Splines of Arbitrary Degree: Linear Dependencies, Partition of Unity Property, Nesting Behaviour and Local Refinement, Int. J. Numer. Methods Eng, 103:547-581,2015.

  23. Evans, E.J., Scott, M.A., Li, X., and Thomas, D.C., Hierarchical T-Splines: Analysis-Suitability, Bezier Extraction, and Ap-plication as an Adaptive Basis for Isogeometric Analysis, Comput. Methods Appl. Mech. Eng., 284:1-20, 2015.

  24. Chen, L. and de Borst, R., Adaptive Refinement of Hierarchical T-Splines, Comput. Methods Appl. Mech. Eng., 337:220-245, 2018.

  25. Wei, X., Zhang, Y., Liu, L., and Hughes, T.J.R., Truncated T-Splines: Fundamentals and Methods, Comput. Methods Appl. Mech. Eng, 316:349-372, 2017.

  26. Ghanem, R. and Spanos, P.D., Stochastic Finite Elements: A Spectral Approach, New York: World Publishing Corp., 1991.

  27. Belytschko, T., Lu, Y.Y., and Gu, L., Element-Free Galerkin Methods, Int. J. Numer. Methods Eng, 37:229-256, 1994.

  28. Rahman, S. and Xu, H., A Meshless Method for Computational Stochastic Mechanics, Int. J. Comput. Methods Eng. Sci. Mech, 64:41-58, 2005.

  29. Papaioannou, I., Non-Intrusive Finite Element Reliability Analysis, Saarbrucken, Germany: SVH-Verlag, 2013.

  30. Pranesh, S. and Ghosh, D., Faster Computation of the Karhunen-Loeve Expansion Using Its Domain Independence Property, Comput. Methods Appl. Mech. Eng, 285:125-145, 2015.

  31. Rahman, S., A Galerkin Isogeometric Method for Karhunen-Loeve Approximation of Random Fields, Comput. Methods Appl. Mech. Eng, 338:533-561, 2018.

  32. Jahanbin, R. and Rahman, S., An Isogeometric Collocation Method for Efficient Random Field Discretization, Int. J. Numer. Methods Eng, 117(3):344-369, 2019.

  33. Mantzaflaris, A., Jutler, B., Khoromskij, B.N., and Langer, U., Low Rank Tensor Methods in Galerkin-Based Isogeometric Analysis, Comput. Methods Appl. Mech. Eng, 316:1062-1085, 2017.

  34. Beck, J., Sangalli, G., and Tamellini, L., A Sparse-Grid Isogeometric Solver, Comput. Methods Appl. Mech. Eng, 335:128-151,2018.

  35. Li, K., Gao, W., Wu, D., Song, C., and Chen, T., Spectral Stochastic Isogeometric Analysis of Linear Elasticity, Comput. Methods Appl. Mech. Eng., 332:157-190, 2018.

  36. Jahanbin, R. and Rahman, S., Stochastic Isogeometric Analysis in Linear Elasticity, Comput. Methods Appl. Mech. Eng, 364:112928,2020.

  37. Dunford, N. and Schwartz, J.T., Linear Operators, Spectral Theory, Self Adjoint Operators in Hilbert Space, Part 2, Hoboken, NJ: Wiley-Interscience, 1988.

  38. Matthies, H.G. and Keese, A., Galerkin Methods for Linear and Nonlinear Elliptic Stochastic Partial Differential Equations, Comput. Methods Appl. Mech. Eng., 194:1295-1331, 2005.

  39. Le Maitre, O.P. and Knio, O.M., Spectral Methods for Uncertainty Quantification, New York: Springer Science + Business Media, 2010.

  40. Xu, H. and Rahman, S., A Generalized Dimension-Reduction Method for Multidimensional Integration in Stochastic Mechanics, Int. J. Numer. Methods Eng., 61:1992-2019, 2004.

  41. Xiong, F., Greene, S., and Chen, W., A New Sparse Grid Based Method for Uncertainty Propagation, Struct. Multidisc. Optim., 41:335-349,2010.

  42. Cottrell, J.A., Hughes, T.J.R., and Reali, A., Studies of Refinement and Continuity in Isogeometric Structural Analysis, Comput. Methods Appl. Mech. Eng., 196:4160-4183,2007.

  43. Piegl, L.A. and Tiller, W., The NURBS Book, 2nd ed., Berlin: Springer-Verlag, 1997.

  44. Farm, G.E., NURBS Curves and Surfaces: From Projective Geometry to Practical Use, Natick, MA: A.K. Peters, Ltd., 1999.

  45. De Boor, C., On Calculation with B-Splines, J. Approx. Theory, 6:50-62, 1972.

  46. Frigo, M. and Johnson, S.G., FFTW: An Adaptive Software Architecture for the FFT, in Proc. of 1998ICASSP Conference, 1998.

  47. Saad, Y., Numerical Methods for Large Eigenvalue Problems, New York: Halsted Press, 1992.

  48. Greengard, L. and Rokhlin, V., A New Version of the Fast Multipole Method for the Laplace Equation in Three Dimensions, Acta Numer, 6:229-269, 1997.

  49. Golub, G.H. and van Loan, C.F., Matrix Computations, 3rd ed., Baltimore, MD: Johns Hopkins University Press, 1996.

  50. Wu, K. and Simon, H., Thick-Restart Lanczos Method for Large Symmetric Eigenvalue Problems, SIAM J. Matrix Anal. Appl, 22:602-616,2000.

  51. MATLAB, Version 2019a, Natick, MA: The MathWorks Inc., 2019.

  52. Wikipedia, Disk Brake, accessed May, from https://en.wikipedia.org/wiki/Disc_brake, 2020.

  53. T-Splines Inc., from http://www.tsplines.com/rhino/, 2011.

  54. Scott, M.A., Simpson, R.N., Evans, J.A., Lipton, S., Bordas, S.P.A., Hughes, T.J.R., and Sederberg, T.W., Isogeometric Boundary Element Analysis Using Unstructured T-Splines, Comput. Methods Appl. Mech. Eng., 254:197-221,2013.

CITED BY
  1. Dixler Steven, Jahanbin Ramin, Rahman Sharif, Uncertainty quantification by optimal spline dimensional decomposition, International Journal for Numerical Methods in Engineering, 122, 20, 2021. Crossref

  2. Burova I. G., Fredholm Integral Equation and Splines of the Fifth Order of Approximation, WSEAS TRANSACTIONS ON MATHEMATICS, 21, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain