Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Uncertainty Quantification

Impact factor: 1.000

ISSN Print: 2152-5080
ISSN Online: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2017019428
Forthcoming Article

A FULLY ADAPTIVE INTERPOLATED STOCHASTIC SAMPLING METHOD FOR RANDOM PDE

Felix Anker
WIAS Berlin
Christian Bayer
WIAS Berlin
Martin Eigel
Weierstrass Institute
Johannes Neumann
WIAS Berlin
John G. M. Schoenmakers
WIAS Berlin

ABSTRACT

A numerical method for the fully adaptive sampling and interpolation of PDE with random data is presented. It is based on the idea that the solution of the PDE with stochastic data can be represented as conditional expectation of a functional of a corresponding stochastic differential equation (SDE). The physical domain is decomposed by a non-uniform grid and a classical Euler scheme is employed to approximately solve the SDE at grid vertices. Interpolation with a conforming finite element basis is employed to reconstruct a global solution of the problem. An a posteriori error estimator is introduced which provides a measure of the different error contributions. This facilitates the formulation of an adaptive algorithm to control the overall error by either reducing the stochastic error by locally evaluating more samples, or the approximation error by locally refining the underlying mesh. Numerical examples illustrate the performance of the presented novel method.