Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Uncertainty Quantification

Impact factor: 1.000

ISSN Print: 2152-5080
ISSN Online: 2152-5099

Open Access

International Journal for Uncertainty Quantification

DOI: 10.1615/Int.J.UncertaintyQuantification.2017019550
Forthcoming Article

On Bernoulli's free boundary problem with a random boundary

Marc Dambrine
Universite de Pau et des Pays de l'Adour
Helmut Harbrecht
University of Basel
Michael Peters
University of Basel
Benedicte Puig
Universite de Pau et des Pays de l'Adour

ABSTRACT

This article is dedicated to the solution of Bernoulli’s exterior free boundary problem in the situation of a random interior boundary. We provide the theoretical background that ensures the well-posedness of the problem under consideration and describe two different frameworks to define the expectation and the deviation of the resulting annular domain. The first approach is based on the Vorob’ev expectation, which can be defined for arbitrary sets. The second approach is based on the particular parametrization. In order to compare these approaches, we present analytical examples for the case of a circular interior boundary. Additionally, numerical experiments are performed for more general geometric configurations. For the numerical approximation of the expectation and the deviation, we propose a sampling method like the Monte Carlo or the quasi-Monte Carlo quadrature. Each particular realization of the free boundary is then computed by the trial method, which is a fixed-point like iteration for the solution of Bernoulli’s free boundary problem.