Library Subscription: Guest
Journal of Flow Visualization and Image Processing

Published 4 issues per year

ISSN Print: 1065-3090

ISSN Online: 1940-4336

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00013 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.14 SJR: 0.201 SNIP: 0.313 CiteScore™:: 1.2 H-Index: 13

Indexed in

VISUALIZATION OF FLOW THROUGH THE TURBINE BLADE CASCADE WITH OPTIMIZED STREAMWISE BOUNDARY LAYER FENCE

Volume 19, Issue 1, 2012, pp. 57-80
DOI: 10.1615/JFlowVisImageProc.2012004130
Get accessGet access

ABSTRACT

The present study focuses on the study of critical points formed on the surfaces of a turbine cascade with and without streamwise endwall fences with the help of flow visualization. A fence whose height varies linearly from the leading edge to the trailing edge and is located in the middle of the flow passage produces the least Coefficient of Secondary Kinetic Energy (CSKE) and is the optimum fence. The reduction in CSKE by the optimum fence is 27% compared to the baseline case. The geometry of the fence is new and is reported for the first time. The objective of the fence is to block the passage vortex from crossing the passage and impinging on the suction surface of the blade. A saddle point is formed near the leading edge on the endwall for baseline and optimum fence cases. There is nearly no change in saddle point location. Distribution of critical points on the endwall near the trailing edge of the blade is symmetrical for the baseline case, while no symmetry exists for the optimum fence case. Based on skin friction line patterns, it is clear that the pressure-side leg of the horseshoe vortex is diverted by the optimum fence, and hence, impinged on the suction surface of the blade with reduced intensity. Skin friction lines on the suction surface show that with application of the optimum fence, the spanwise penetration of the passage vortex is reduced by 33%.

CITED BY
  1. Ilieva Ilieva Galina, A Deep Insight to Secondary Flows, Defect and Diffusion Forum, 379, 2017. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain