Library Subscription: Guest
Journal of Flow Visualization and Image Processing

Published 4 issues per year

ISSN Print: 1065-3090

ISSN Online: 1940-4336

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00013 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.14 SJR: 0.201 SNIP: 0.313 CiteScore™:: 1.2 H-Index: 13

Indexed in

INVESTIGATION OF ROTATIONAL SYMMETRY IN VORTEX-DRIVEN ACOUSTIC OSCILLATIONS IN A LABORATORY-SCALE SWIRL COMBUSTOR

Volume 26, Issue 1, 2019, pp. 79-97
DOI: 10.1615/JFlowVisImageProc.2018025857
Get accessGet access

ABSTRACT

Combustors in gas turbines exhibit thermoacoustic instability marked by high-amplitude pressure oscillations, during which the characteristics of the flame undergo significant changes. In the present work, a laboratory-scale swirl combustor is characterized by its stable and unstable flame behavior. The chemiluminescence of the CH* radicals in the flame is recorded at high framing rates simultaneously with the measurement of the acoustic pressure excited in the combustor. The combustor is unstable at low fue-air equivalence ratio and high air flow rate (represented in terms of Reynolds number, Re). Under unstable conditions, the high-speed CH chemiluminescence images reveal the evolution of a mushroom-shaped flame structure at the pressure maximum in every acoustic cycle, which eventually flares into an axisymmetric flame convecting downstream. The flame curling associated with the mushroom-shaped pattern is investigated for the signature of vortex-driven combustion instability by means of rotational symmetry in the flame images. A scale-invariant feature tranform algorithm is employed to detect rotational symmetry for this purpose. The results reveal the appearance of rotational symmetry at the zero pressure crossings and pressure maxima. The number of frames bearing the rotational symmetry is correlated with the duration over which peak pressure prevails across several acoustic cycles, to reinforce the role of vortex combustion in exciting pressure oscillations in the combustor.

CITED BY
  1. Ramanan Vikram, Ramankutty Anusai, Sreedeep Sharan, Chakravarthy Satyanarayanan R., Analysis of Transition to Thermo-Acoustic Instability in Swirl Combustor Using Variational Auto-Encoders, Journal of Propulsion and Power, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain