Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
SJR: 0.176 SNIP: 0.48 CiteScore™: 1.3

ISSN Print: 1093-3611
ISSN Online: 1940-4360

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.2017019271
pages 295-307

MODIFICATION OF THE SILUMIN STRUCTURE AND PROPERTIES BY ELECTRON−ION-PLASMA SATURATION OF THE SURFACE WITH ATOMS OF METALS AND GASES

Yurii F. Ivanov
Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences (IHCE SB RAS), Tomsk, Russia; National Research Tomsk Polytechnic University, Tomsk, Russia
Nikolay N. Koval
Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences, 2/3 Akademichesky Ave., Tomsk, 634055, Russia; National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050, Russia
E. A. Petrikova
Institute of High Current Electronics, Siberian Branch of the Russian Academy of Sciences (IHCE SB RAS), Tomsk, Russia
A. P. Laskovnev
Presidium of the National Academy of Sciences of Belarus, Minsk, Belarus
Vladimir V. Uglov
Belarusian State University, 4 Nezavisimost Ave., Minsk, 220030, Belarus; National Research Tomsk Polytechnic University, 2a Lenin Ave., Tomsk, 634028, Russia
Nikolai N. Cherenda
Belarusian State University, 4 Nezavisimost Ave., Minsk, 220030, Belarus; South-Urals State University, 76 Lenin Ave., Chelyabinsk, 454080, Russia

ABSTRACT

The results of modification of the composition of eutectic silumin doped with titanium by means of a high-intensity pulsed electron-beam irradiation of the film (Ti)/substrate (silumin) system and subsequent nitrogen saturation in the plasma of low pressure arc discharge are presented. Such complex electron−ion-plasma treatment can increase the wear resistance of silumin by multiphase surface layer formation with a submicron and nanosized structure.


Articles with similar content:

MODIFICATION OF HYPEREUTECTIC SILUMIN SURFACE LAYER BY A HIGH-INTENSITY PULSE ELECTRON BEAM
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.19, 2015, issue 1
A. D. Teresov, E. A. Petrikova, Nikolay N. Koval, Nikolai N. Cherenda, Yurii F. Ivanov, M. V. Astashynskaya, A. P. Laskovnev, Vladimir V. Uglov
COMBINED MODIFICATION OF ALUMINUM BY ELECTRON-ION-PLASMA METHODS
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.18, 2014, issue 4
A. D. Teresov, E. A. Petrikova, I. A. Ikonnikova, O. V. Ivanova, V. V. Shugurov, Yurii F. Ivanov, Olga V. Krysina, M. Rygina
MODIFICATION OF Al−20%Si HYPEREUTECTIC ALLOY STRUCTURE BY COMPRESSION PLASMA FLOW TREATMENT
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.17, 2013, issue 2-3
Valiantsin M. Astashynski, Nikolai N. Cherenda, S. V. Gusakova, A. M. Kuzmicki, A. P. Laskovnev, Vladimir V. Uglov
FILM–SUBSTRATE SURFACE ALLOY FORMED BY AN INTENSE PULSED ELECTRON BEAM
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.21, 2017, issue 4
E. A. Petrikova, P. V. Moskvin, Nikolay N. Koval, Yurii F. Ivanov, O. S. Tolkachev, Olga V. Krysina
STEEL 45 SURFACE MODIFICATION BY A COMBINED ELECTRON-ION-PLASMA METHOD
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.19, 2015, issue 1
I. A. Ikonnikova, Yu. A. Denisova, O. V. Ivanova, V. E. Gromov, Yurii F. Ivanov, E. A. Budovskikh, S. Yu. Filimonov