Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

Impact factor: 0.058

ISSN Print: 1093-3611
ISSN Online: 1940-4360

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.v15.i1.30
pages 15-22


S. Robert
Laboratoire de Genie des Precedes Plasmas et Traitement de Surface, Universite Pierre et Marie CURIE (Paris VI) ENSCP - 11, rue Pierre et Marie CURIE 75231, PARIS Cedex 05 - France
E. Francke
Laboratoire de Génie Procédés Plasmas et Traitement de Surface, Université Pierre et Mane Curie- ENSCP 11-13, rue Pierre et Marie Curie 75231 Paris Cedex 05 France
S. Cavadias
Laboratoire Genie Precedes Plasmas - ENSCP 11, rue Pierre et Marie Curie - 75005 Paris- France
M. F. Gonnord
Laboratoire des Mecanismes Reactionnels - CNRS UMR 7651, Ecole polytechnique, 91128 Palaiseau Cedex - France
Jacques Amouroux
Laboratoire de Genie des Precedes Plasmas Universite P. et M. Curie, ENSCP 11 rue P. et M. Curie 75005 Paris France


An experimental study of the decomposition of acetaldehyde in a dry air mixture has been carried out using a dielectric barrier discharge. Operating parameters that affect the CH3CHO destruction efficiency include the gas mixture composition, the applied voltage, and the gas residence time in the reactor. The plasma is produced in a narrow gap by a dielectric barrier discharge at low applied voltage, 40 kHz. An isotopic labeling (CD3CHO) is used with gas chromatography-mass spectrometry identification of the formed stabilized species in order to investigate the mechanism of acetaldehyde decomposition, and especially the CH3 radical stability. Additionally, the influence of the plasmagen gas mixture composition on the chemical reaction pathways in the discharge has been studied.


  1. Higashi, M., Uchida, S., Suzuki, N., and Fujii, K., Soot elimination and NOx and SOx reduction in diesel-engine exhaust by a combination of discharge plasma and oil dynamics.

  2. Takaki, K., Jani, M. A., and Fujiwara, T., Removal of nitric oxide in flue gases by multipoint to plane dielectric barrier discharge.

  3. Chang, M. B., Kushner, M. J., and Rood, M. J., Removal of SO2 and the simultaneous removal of SO2 and NO from simulated flue gas streams using dielectric barrier discharge plasmas.

  4. Nelson, D. D. and Zahniser, M. S., A mechanistic study of the reaction of HO2 radical with ozone.

  5. Hu, Y. H. and Ruckenstein, E., Isotopic GCMS study of the mechanism of methane partial oxidation to synthesis gas.

  6. Francke, E., Robert, S., Gonnord, M. F., and Amouroux, J., Pollutant Gases Destruction in a Pulsed Corona Discharge.

  7. Gentile, A. C. and Kushner, M. J., Reaction chemistry and optimization of plasma remediation of NO from gas streams.

  8. Kogelschatz, U., Eliasson, B., and Egli, W., Dielectric-Barrier Discharges: Principle and Applications, Int. Conference on Phenomena in Ionized Gases (ICPIG XXIII).

  9. Vogtlin, G. E., Merrit, B. T., Hsiao, M. C., Wallman, P. H., and Penetrante, B. M., Plasma-assisted catalytic reduction system.