Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes
SJR: 0.137 SNIP: 0.341 CiteScore™: 0.43

ISSN Print: 1093-3611
ISSN Online: 1940-4360

High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes

DOI: 10.1615/HighTempMatProc.2019030266
pages 107-120

THE EFFECTS OF BORIDING AND HEATING ON THE DUCTILITY, STRENGTH, AND TOUGHNESS OF AISI 1045 STEEL

M. Prince
Sri Krishna College of Technology, Coimbatore, Tamilnadu, India
A. Justin Thanu
Park College of Engineering and Technology, Coimbatore, Tamilnadu, India

ABSTRACT

In this investigation, the effects of boriding and heating on the ductility, strength, and toughness of AISI 1045 steels are studied experimentally by using a shear punch test. Boriding reduces the ductility, strength, and toughness of steel samples and the impact of boriding on steel samples is explained through the growth of acicular borides, case depth (particularly FeB), grain coarsening, and hardness gradient depending on the boriding time. The effects of boriding and heating are compared. The effects of boriding and heating on grain coarsening are explained by a mechanism based on the huge difference between the thermal conductivity between the iron and iron borides. The results indicate that the boriding reduced the ductility by 5–25%, whereas the heating enhances the ductility by 5–12%. On the contrary, heating reduces the strength by 14–30% and the addition of boron compensates the loss significantly, and this further is enhanced by increasing the boriding time. Both boriding and heating enhanced the reduction in toughness by 38–45% and 12–23%, respectively.

REFERENCES

  1. Bataev, I.A., Bataev, A.A., Golkovsky, M.G., Teplykh, A.Yu., Burov, V.G., and Veselov, S., Non-Vacuum Electron-Beam Boriding of Low-Carbon Steel, Surf. Coat. Technol. vol. 207, pp. 245-253, 2012. DOI: 10.1016/j.surfcoat.2012.06.081.

  2. Biddulph, R.H., Boronizing for Erosion Resistance, Thin Solid Films, vol. 45, no. 2, pp. 341-347, 1977. DOI: 10.1016/0040-6090(77)90267-XG.

  3. Bourithis, L., Papaefthymiou, S., and Papadimitrou, G.D., Plasma Transferred Arc Boriding of a Low Carbon Steel: Microstructure and Wear Properties, Appl. Surf. Sci., vol. 200, nos. 1-4, pp. 203-218, 2002. DOI: 10.1016/S0169-4332(02)00901-7.

  4. Campos-Silva, I.E. and Rodriguez-Castro, G.E., Boriding to Improve the Mechanical Properties and Corrosion Resistance of Steels, in Thermochemical Surface Engineering of Steels, E.J. Mittemeojer, Ed., New York: Elsevier, pp. 769-792, 2015.

  5. David, K., Anthymidis, K.G., Agrianidis, P., and Petropoulos, G., Characterization and Tribological Properties of Boride Coatings of Steels in a Fluidized Bed Reactor, Ind. Lubr. Tribol., vol. 60, pp. 31-36, 2008. DOI: 10.1016/S1468-6996(02)00038-4.

  6. Davis, J.A., Wilbur, P.J., Williamson, D.L., Wei, R., and Vajo, J.J., Ion Implantation Boriding of Iron and AISI M2 Steel Using a High-Current Density, Low Energy, Broad-Beam Ion Source, Surf. Coat. Technol., vol. 103, pp. 52-57, 1998. DOI: 10.1016/S0257-8972(98)00374-0.

  7. Davis, J.R., Ed., Surface Hardening of Steels: Understanding the Basics, Novelty, OH: ASM International, 2002.

  8. Dossett, J. and Totten, G.E., Introduction to Surface Hardening of Steels, ASM Handbook, 2013.

  9. Fichtl, W., Boronizing and Its Practical Applications, Mater. Des., vol. 2, pp. 276-286, 1981. DOI: 10.1016/0261-3069(81)90034-0.

  10. Filep, E. and Farkas, S., Kinetics of Plasma-Assisted Boriding, Surf. Coat. Technol., vol. 199, pp. 1-6, 2005. DOI: 10.1016/j.surfcoat.2005.03.031.

  11. Goeuriot, P., Thevenot, F., and Driver, J.H., Methods for Examining Brittle Layers Obtained by a Boriding Surface Treatment (Borudif), Wear, vol. 86, pp. 1-10, 1983. DOI: 10.1016/0043-1648(83)90083-2.

  12. Gopalakrishnan, P., Ramakrishnan, S.S., Shankar, P., et al., Interrupted Boriding of Medium-Carbon Steels, Metall. Mater. Trans. A., vol. 33, pp. 1475-1485, 2002. DOI: 10.1007/s11661-002-0070-0.

  13. Gopalakrishnan, P., Shankar, P., Rao, R.V.S., Sundar, M., and Ramakrishnan, S.S., Laser Surface Modification of Low Carbon Borided Steels, Scr. Mater, vol. 44, pp. 707-712, 2001. DOI: 10.1016/S1359-6462(00)0067.

  14. Kunitskii, Y.A. and Marek, E.V., Some Physical Properties of Iron Borides, Powder Metall. Met. Ceram., vol. 10, pp. 216-218, 1971. DOI: /10.1007/BF00796711.

  15. Lyakhovich, L.S., Dolmanov, F.V., and Isakov, S.A., Boriding Of Steels in Gaseous Media, Met. Sci. Heat Treat., vol. 24, pp. 260-263, 1982. DOI: 10.1007/BF00772471.

  16. Lyakhovich, L.S., Protasevich, G.F., Voroshnin, L.G., Suprunovich, A.S., and Shabashova, N.D., Liquid Boriding, Met. Sci. Heat Treat, vol. 18, pp. 647-648, 1976. DOI: 10.1007/BF00703830.

  17. Mann, B.S., Boronizing of Cast Martensitic Chromium Nickel Stainless Steel and Its Abrasion and Cavitation-Erosion Behavior, Wear, vol. 208, pp. 125-131, 1997. DOI: 10.1016/S0043-1648(96)07374-7.

  18. Matuschka, A.G., Boronizing, Munich: Carl Hanser Verlag, 1980.

  19. Prince, M., Arjun, S.L., Surya Raj, G., and Gopalakrishnan, P., Experimental Investigations on the Effects of Multicomponent Laser Bonding on Steels, Mater. Today Proceedings, vol. 5, no. 11, part 3, pp. 25276-25284, 2018. DOI: 10.1016/j.matpr.2018.10.330.

  20. Prince, M., Thanu, A.J., Arjun, S.L., Velmurugan, V., and Gopalakrishnan, P., Fracture Microindentation on Boride Layers on AISI 1020 Steel, in IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing, vol. 114, no. 1, p. 12105, 2016. DOI: 10.1088/1757-899X/114/1/01205.

  21. Prince, M., Gopalakrishnan, P., and Bhuvanashekaran, G., Laser Surface Alloying of Nickel and Chromium (III) Electroplated Carbon Steel with Nd:YAG Laser, High Temp. Mater. Process., vol. 29, pp. 313-324, 2010. DOI: 10.1515/HTMP.2010.29.4.313.

  22. Prince, M., Some Studies on Laser Boriding of Nickel and Chromium Electroplated AISI 1020 Steel, Ph.D, Anna University, Chennai, 2014.

  23. Rile, M., Reasons for the Formation of Cracks in Boride Coatings on Steel, Met. Sci. Heat Treat., vol. 16, pp. 836-838, 1974. DOI: 10.1007/BF00664246.

  24. Sinha, A.K., Heat Treating: Boriding (Boronizing) of Steels, ASM Handbook, 1991.


Articles with similar content:

A COMPARATIVE STUDY OF THE MECHANICAL PROPERTIES OF GLASS−POLYESTER COMPOSITES FILLED WITH INDUSTRIAL WASTES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.5, 2014, issue 4
Arun Kumar Rout, Subhrajit Ray
PORE-SCALE MODELING OF GAS-WATER FLOW IN PERMEABILITY JAIL OF TIGHT SANDSTONES
Journal of Porous Media, Vol.22, 2019, issue 10
Fei Mo, Xiaolong Peng, Baosheng Liang, Zhimin Du
EFFECTS OF THREE-DIMENSIONAL HEAT AND MOISTURE TRANSFER ON DEFORMATION AND STRESS BEHAVIORS OF MOLDED CERAMICS DURING DRYING
International Heat Transfer Conference 10, Vol.13, 1994, issue
Yoshinori Itaya, Masanobu Hasatani
STUDIES ON PERMEABILITY PROPERTIES AND PARTICLE CAPTURE EFFICIENCIES OF POROUS SiC CERAMICS PROCESSED BY OXIDE BONDING TECHNIQUE
Journal of Porous Media, Vol.18, 2015, issue 9
Murilo D. M. Innocentini, Vadila G. Guerra, Omprakash Chakrabarti, Rafael F. Caldato, Caio M. Andre, Nijhuma Kayal, Atanu Dey
PETROPHYSICAL AND MICROSTRUCTURAL EVALUATION OF THE THERMAL CYCLE LOADING EFFECT ON GEOTHERMAL WELLBORE CEMENTS
Journal of Porous Media, Vol.18, 2015, issue 2
Mileva Radonjic, Kolawole S. Bello