Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Multiphase Science and Technology

ISSN Print: 0276-1459
ISSN Online: 1943-6181

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.v24.i1.20
pages 47-66


Nicolas Ratkovich
BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics. Ghent University, Coupure Links 653, B-9000, Ghent, Belgium ; Department of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark
M. Hunze
FlowConcept GmbH, Vahrenwalder Strasse 7, 30165 Hannover, Germany
I. Nopens
BIOMATH, Department of Mathematical Modelling, Statistics and Bioinformatics. Ghent University, Coupure Links 653, B-9000, Ghent, Belgium


Computational fluid dynamics (CFD) models can be used to gain insight into the shear stresses induced by air sparging on submerged hollow fiber membrane bioreactor (MBR) systems. It was found that the average range of shear stresses obtained by the CFD model (0.30-0.60 Pa) and experimentally (0.39-0.69 Pa) were in good agreement, with an error less that 15%. Based on comparison of the cumulative frequency distribution of shear stresses from experiments and simulation, (i) moderate shear stresses (i.e., 50th percentile) were found to be accurately predicted (model: 0.24-0.45 Pa; experimental: 0.25-0.49 Pa) with an error of less than 5%; (ii) high shear stress (i.e., 90th percentile) predictions were much less accurate (model: 0.60-1.23 Pa; experimental: 1.04-1.90 Pa) with an error up to 38%. This was attributed to the fact that the CFD model only considers the two-phase flow (50th percentile) and not the movement of fibers. The latter is likely due to shielding effects or fiber sway, significantly affecting shear stresses at the high end of the distribution. However, this was not accounted for in the model in this study. Despite these deviations, the CFD model in its current state can be used to gain insight into the order of magnitude and shear stress distribution. Inclusion of fiber movement is recommended.


  1. Bentzen, T. R., Ratkovich, N., Rasmussen, M. R., Heinen, N., and Hansen F., Energy efficient aeration in a single low pressure hollow sheet membrane filtration module.

  2. Brannock, M. W. D., De Wever, H., Wang, Y., and Leslie, G., Computational fluid dynamics simulations of MBRs: Inside submerged versus outside submerged membranes. DOI: 10.1016/j.desal.2007.10.073

  3. Brannock, M. W. D., Wang, Y., and Leslie, G., Evaluation of full-scale membrane bioreactor mixing performance and the effect of membrane configuration. DOI: 10.1016/j.memsci.2009.12.016

  4. Brannock, M., Leslie, G., Wang, Y., and Buetehorn, S., Optimising mixing and nutrient removal in membrane bioreactors: CFD modelling and experimental validation. DOI: 10.1016/j.desal.2008.11.048

  5. Brannock, M., Wang, Y., and Leslie, G., Mixing characterisation of full-scale membrane bioreactors: CFD modelling with experimental validation. DOI: 10.1016/j.watres.2010.02.029

  6. Buetehorn, S., Volmering, D., Vossenkaul, K., Wintgens, T., Wessling, M., and Melin, T., CFD simulation of single- and multi-phase flows through submerged membrane units with irregular fiber arrangement. DOI: 10.1016/j.memsci.2011.09.022

  7. Chan, C. C. V., Berube, P. R., and Hall, E. R., Shear profiles inside gas sparged submerged hollow fiber membrane modules. DOI: 10.1016/j.memsci.2007.03.032

  8. Cui, Z. F., Chang, S., and Fane, A. G., The use of gas bubbling to enhance membrane processes. DOI: 10.1016/S0376-7388(03)00246-1

  9. Dumont, E., Fayolle, F., and Legrand, J., Flow regimes and wall shear rates determination within a scraped surface heat exchanger. DOI: 10.1016/S0260-8774(00)00056-X

  10. Dumont, E., Fayolle, F., Sobolik, V., and Legrand, J., Wall shear rate in the Taylor-Couette-Poiseuille flow at low axial Reynolds number. DOI: 10.1016/S0017-9310(01)00183-1

  11. Ekambara, K. and Joshi, J. B., Computational fluid dynamics simulations in bubble-column reactors: Laminar and transition regimes. DOI: 10.1021/ie0492606

  12. Fulton, B. and Bérubé, P. R., Optimal module configuration and sparging scenario for a ZW500 submerged hollow fiber membrane system.

  13. Fulton, B. G., Redwood, J., Tourais, M., and Bérubé, P. R., Distribution of surface shear forces and bubble characteristics in full-scale gas sparged submerged hollow fiber membrane modules. DOI: 10.1016/j.desal.2011.07.050

  14. Garakani, A. H. K., Mostoufi, N., Sadeghi, F., Hosseinzadeh, M., Fatourechi, H., Sarrafzadeh, M. H., and Mehrnia, M. R., Comparison between different models for rheological characterization of activated sludge.

  15. Itazu, Y. and Nagano, Y., RNG modeling of turbulent heat flux and its application to wall shear flows. DOI: 10.1299/jsmeb.41.657

  16. Judd, S., The MBR Book.

  17. Judd, S., Theoretical and experimental representation of a submerged membrane bio-reactor system. DOI: 10.1016/S0958-2118(01)80232-9

  18. Khalili, A., Mehrnia, M. R., Mostoufi, N., and Sarrafzadeh, M., Flow characteristics in an airlift membrane bioreactor. DOI: 10.2202/1934-2659.1403

  19. Khalili-Garakani, A., Mehrnia, M. R., Mostoufi, N., and Sarrafzadeh, M. H., Analyze and control fouling in an airlift membrane bioreactor: CFD simulation and experimental studies. DOI: 10.1016/j.procbio.2011.01.036

  20. Kulkarni, A. V., Roy, S. S., and Joshi, J. B., Pressure and flow distribution in pipe and ring spargers: Experimental measurements and CFD simulation. DOI: 10.1016/j.cej.2007.03.011

  21. Le-Clech, P., Alvarez-Vazquez, H., Jefferson, B., and Judd, S., Fluid hydrodynamics in submerged and sidestream membrane bioreactors.

  22. Legrand, J., Dumont, E., Comiti, J., and Fayolle, F., Diffusion coefficients of ferricyanide ions in polymeric solutions — comparison of different experimental methods. DOI: 10.1016/S0013-4686(99)00391-6

  23. Liu, W., Jordan, E., Kippax, V., Kang, C. W., Lou, J., Zhang, Q., and Liu, N., Using computational fluid dynamics (CFD) and particle image velocimetry (PIV) to characterize air and water two phase plug flow membrane clean system. DOI: 10.2175/193864709793954853

  24. Liu, N., Zhang, Q., Chin, G., Ong, E., Lou, J., Kang, C., Liu, W., and Jordan, E., Experimental investigation of hydrodynamic behavior in a real membrane bio-reactor unit. DOI: 10.1016/j.memsci.2010.02.042

  25. Ndinisa, N. V., Fane, A. G., Wiley, D. E., and Fletcher, D. F., Fouling control in a submerged flat sheet membrane system: Part II—Two-phase flow characterization and CFD simulations. DOI: 10.1080/01496390600633915

  26. Nguyen Cong Duc, E., Levecq, C., Lesjean, B., and Tazi-Pain, A., Modelling the two phase flow in a pilot submerged membrane bioreactor.

  27. Ratkovich, N., Fulton, B., Hunze, M., Berube, P. R., and Nopens, I., Experimental validation of a hydrodynamic CFD model of a hollow fiber MBR using shear intensity measurements. DOI: 10.2175/193864710798217151

  28. Reiss, L. P. and Hanratty, T. J., An experimental study of the unsteady nature of the viscous sublayer. DOI: 10.1002/aic.690090204

  29. Saalbach, J. and Hunze, M., Flow structures in MBR-tanks. DOI: 10.2166/wst.2008.122

  30. Taha, T. and Cui, Z. F., CFD modelling of gas-sparged ultrafiltration in tubular membranes. DOI: 10.1016/S0376-7388(02)00360-5

  31. Tavoularis, S., Measurement in Fluid Mechanics.

  32. Tchobanoglous, G., Burton, F. L., and Stensel, H. D., Wastewater Engineering: Treatment and Reuse.

  33. Theodoulou, M., Systems Development Manager.

  34. Verrecht, B., Judd, S., Guglielmi, G., Brepols, C., and Mulder, J. W., An aeration energy model for an immersed membrane bioreactor. DOI: 10.1016/j.watres.2008.09.013

  35. Wang, Y., Brannock, M., and Leslie, G., Membrane bioreactors: overview of the effects of module geometry on mixing energy. DOI: 10.1002/apj.248

  36. Wang, Y., Brannock, M., Cox, S., and Leslie, G., CFD simulations of membrane filtration zone in a submerged hollow fibre membrane bioreactor using a porous media approach. DOI: 10.1016/j.memsci.2010.07.008