Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Multiphase Science and Technology
SJR: 0.153 SNIP: 0.222 CiteScore™: 0.26

ISSN Print: 0276-1459
ISSN Online: 1943-6181

Multiphase Science and Technology

DOI: 10.1615/MultScienTechn.v22.i1.10
pages 1-30


R. K. Decker
Faculty of Chemical Engineering, State University of Campinas, Cidade Universitaria "Zeferino Vaz," CP 6066, 13083-970, Campinas SP
H. F. Meier
Department of Chemical Engineering, Regional University of Blumenau, Rua Sao Paulo 3250, 89030-000 Blumenau SC
Udo Fritsching
Department of Particles and Process Engineering, University of Bremen; Foundation Institute of Materials Science, Badgasteiner Str. 3, D-28359 Bremen, Germany
M. Mori
Faculty of Chemical Engineering, State University of Campinas, Cidade Universitaria "Zeferino Vaz," CP 6066, 13083-970, Campinas SP


Mixing processes of particulates such as droplets or solid particles with gases are an essential feature of typical chemical engineering processes. A proper analysis and design of the gas-particle mixing process enhances process qualities and efficiencies. In this contribution, an experimental study of the interaction of gas phase flow coherent structures with particles in a two-phase jet flow is presented. Radial profiles of particle mean velocities, particle sizes, rms velocities, turbulence intensities, and the “interparticle arrival time (IAT)” distribution have been investigated by means of phase Doppler anemometry. The experiments have been executed in a jet at different axial and radial distances from the nozzle. The variation of the initial velocity conditions, particle diameter distributions, and particle loadings yield important information about the local flow structures and their effect on the macroscopic as well as the turbulent particle transport between the jet center and the outer shear layer. The interparticle arrival time distribution proves to be an important tool to identify regions where large-scale coherent structures influence the particle distribution and tend to form particle clusters. The derived extensive experimental data set for the particle behavior in a two-phase jet may serve as a base for the detailed validation of numerical simulations of dispersed two-phase flow behavior, including strong phase interactions between gaseous and particulate phases.


  1. Chanson, H., Bubbly flow structure in hydraulic jump. DOI: doi:10.1016/j.euromechflu.2006.08.001

  2. Crowe, C. T., Gore, R. A., and Troutt, T. R., Particle dispersion by coherent structures in free shear flows. DOI: 10.1080/02726358508906434

  3. Cui, Z. and Fan, L. S., Turbulence energy distributions in bubbling gas-liquid and gas-liquid-solid flow systems. DOI: 10.1016/j.ces.2004.01.031

  4. Devidson, L., An introduction of turbulence models.

  5. Doudou, A., Estimation of turbulence spectra in flows of hard conditions sensed with LDA. DOI: 10.1016/j.measurement.2006.04.013

  6. Druzhinin, O. A., On the two-way interaction in two-dimensional particle-laden flows: The accumulation of particles and flow modification. DOI: 10.1017/S0022112095003004

  7. Eaton, J. K. and Fessler, J. R., Preferential concentration of particles by turbulence. DOI: 10.1016/0301-9322(94)90072-8

  8. Edwards, C. F. and Marx, K. D., Multipoint statistical structure of the ideal spray, Part I: Fundamental concepts and the realization density.

  9. Edwards, C. F. and Marx, K. D., Multipoint statistical structure of the ideal spray, Part II: Evaluating steadiness using the interparticle time distribution.

  10. Fritsching, U., Körich-Decker, R., and Heinlein, J., Tropfen-cluster diagnose in sprays und jets.

  11. Gillandt, I., Fritsching, U., and Bauckhage, K., Measurement of phase interaction in dispersed gas/particle two-phase flow. DOI: 10.1016/S0301-9322(01)00007-6

  12. Gillandt, I. and Fritsching, U., Derivation and discussion of turbulence energy spectra in dispersed multiphase jet flow.

  13. Gillandt, I., Analyse der Turbulenzmodulation im dispersen zweiphasigen Freistrahl.

  14. Harteveld, W. K., Mudde, R. F., and Van Den Akker, H. E. A., Estimation of turbulence power spectra for bubbly flows from laser Doppler anemometry signals. DOI: 10.1016/j.ces.2005.03.037

  15. Hadinoto, K., Jones, E. N., Yurteri, C, and Curtis, J. S., Reynolds number dependence of gas-phase turbulence in gas-particle flows. DOI: 10.1016/j.ijmultiphaseflow.2004.11.009

  16. Heinlein, J. and Fritsching, U., Detection and Evaluation of Droplet Concentration Variations in Sprays.

  17. Heinlein, J. and Fritsching, U., Droplet clustering in sprays. DOI: 10.1007/s00348-005-0087-4

  18. Hussain, A. K. M. F., Coherent structures-reality and myth. DOI: 10.1063/1.864048

  19. Hussainov, M., Kartushinsky, A., Rudi, Ü., Shcheglov, I., Kohnen, G., and Sommerfeld, M., Experimental investigation of turbulence modulation by solid particles in a grid-generated vertical flow. DOI: 10.1016/S0142-727X(00)00022-9

  20. Itoh M. and Okada M., An experimental study of the radial wall jet on a rotating disk. DOI: 10.1016/S0894-1777(97)10048-6

  21. Laats, M. K. and Frishman, F. A., Dispersion of an inertia mixture of varying size in a two-phase axisymmetrical stream. DOI: 10.1007/BF00826676

  22. Longmire, E. K. and Eaton, J. K., Structure of a particle-laden round jet. DOI: 10.1017/S002211209200140X

  23. Luong, J. T. K. and Sojka, P. E., Unsteadiness in effervescent sprays.

  24. Ljus, C., Johansson, B., and Almstedt, A. E., Turbulence modification by particles in a horizontal pipe flow. DOI: 10.1016/S0301-9322(02)00020-4

  25. Nobach, H., Müller, E., and Tropea, C., Efficient estimation of power spectra density from laser Doppler anemometer data. DOI: 10.1007/s003480050199

  26. Paras, S. V., Vlachos, N. A., and Karabelas, A. J., LDA measurements of local velocities inside the gas phase in horizontal stratified/atomization two phase flow. DOI: 10.1016/S0301-9322(97)00072-4

  27. Ribeiro, M. M. and Whitelaw, J. H., The Structure of Turbulent Jets.

  28. Rohlf, F. J. and Sokal, R. R., Statistical Tables.

  29. Shawkat, M. E., Ching, C. Y., and Shoukri, M., On the liquid turbulence energy spectra in two-phase bubbly flow in a large diameter vertical pipe. DOI: 10.1016/j.ijmultiphaseflow.2006.09.002

  30. Tanaka, M., Maeda, Y., and Hagiwara, Y., Turbulence modification in a homogeneous turbulent shear flow laden with small heavy particles. DOI: 10.1016/S0142-727X(02)00157-1

  31. Tso, J. and Hussain, F., Organized motions in a fully developed turbulent axisymmetric jet. DOI: 10.1017/S0022112089001539

  32. Yang, X., Rielly, C., Li, L., Li, G., Chen, B., and Huang, X., Modelling of heavy and buoyant particle dispersion in a two-dimensional turbulent mixing layer. DOI: 10.1016/j.powtec.2007.04.018

  33. Zaman, K. B. M. Q. and Hussain, A. K. M. F., Taylor hypothesis and large-scale coherent structures. DOI: 10.1017/S0022112081000463