Library Subscription: Guest
Multiphase Science and Technology

Published 4 issues per year

ISSN Print: 0276-1459

ISSN Online: 1943-6181

SJR: 0.144 SNIP: 0.256 CiteScore™:: 1.1 H-Index: 24

Indexed in

DIMENSIONAL ANALYSIS OF TERMINAL VELOCITY OF A TAYLOR BUBBLE IN A VERTICAL PIPE

Volume 22, Issue 3, 2010, pp. 197-210
DOI: 10.1615/MultScienTechn.v22.i3.20
Get accessGet access

ABSTRACT

An empirical correlation of the terminal velocity of a Taylor bubble in a vertical pipe is proposed. A fundamental functional form, Fr = f (ReD, EoD), of the correlation is deduced by carrying out a dimensional analysis based on the local instantaneous field equations and the jump conditions. Here Fr is the Froude number, ReD the bubble Reynolds number, and EoD the Eötvös number. In the two limiting cases, (EoD→∞ and ReD→∞) and (EoD→∞ and ReD → 0), the deduced functional form approaches those of the well-known Fr models. Coefficients appearing in the correlation are determined by making use of the limiting cases and available experimental data. Comparisons between the proposed Fr correlation and the experimental data show that the correlation gives a good estimation of terminal velocities of Taylor bubbles for a wide range of fluid properties and pipe diameters, i.e., 10 -7< Re D < 10 4, 4 < Eo D < 3 ×10 3, 10 -2 < N < 10 5, and -11 < log M < 10, where N is the inverse viscosity number and M the Morton number.

REFERENCES
  1. Brown, R. A. S., The mechanics of large gas bubbles in tubes. DOI: 10.1002/cjce.5450430501

  2. Collins, R., DeMoraes, F. F., Davidson, J. F., and Harrison, D., The motion of a large gas bubble rising through liquid flowing in a tube. DOI: 10.1017/S0022112078002700

  3. Dumitrescu, D. T., Stromung and einer luftbluse in senkrechten rohr. DOI: 10.1002/zamm.19430230303

  4. Funada, T., Joseph, D., Maehara, T., and Yamashita, S., Ellipsoidal model of the rise of a Taylor bubble in a round tube. DOI: 10.1016/j.ijmultiphaseflow.2004.11.010

  5. Griffith, P. and Wallis, G. B., Two-phase slug flow.

  6. Tomiyama, A., Drag, lift and virtual mass forces acting on a single bubble.

  7. Viana, F., Pardo, R., Yanez, R., Trallero, J. L., and Joseph, D., Universal correlation for the rise velocity of long gas bubbles in round pipes. DOI: 10.1017/S0022112003006165

  8. Wallis, G. B., One-dimensional two-phase flow.

  9. White, E. T. and Beardmore, R. H., The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes. DOI: 10.1016/0009-2509(62)80036-0

CITED BY
  1. Hayashi Kosuke, Tomiyama Akio, Effects of surfactant on terminal velocity of a Taylor bubble in a vertical pipe, International Journal of Multiphase Flow, 39, 2012. Crossref

  2. Hayashi K., Kurimoto R., Tomiyama A., Terminal velocity of a Taylor drop in a vertical pipe, International Journal of Multiphase Flow, 37, 3, 2011. Crossref

  3. Kurimoto Ryo, Hayashi Kosuke, Tomiyama Akio, Terminal velocities of clean and fully-contaminated drops in vertical pipes, International Journal of Multiphase Flow, 49, 2013. Crossref

  4. Hayashi Kosuke, Hosoda Shogo, Tryggvason Gretar, Tomiyama Akio, Effects of shape oscillation on mass transfer from a Taylor bubble, International Journal of Multiphase Flow, 58, 2014. Crossref

  5. Morgado A.O., Miranda J.M., Araújo J.D.P., Campos J.B.L.M., Review on vertical gas–liquid slug flow, International Journal of Multiphase Flow, 85, 2016. Crossref

  6. Lizarraga-Garcia E., Buongiorno J., Bucci M., An analytical film drainage model and breakup criterion for Taylor bubbles in slug flow in inclined round pipes, International Journal of Multiphase Flow, 84, 2016. Crossref

  7. Kurimoto Ryo, Nakazawa Kento, Minagawa Hisato, Yasuda Takahiro, Prediction models of void fraction and pressure drop for gas-liquid slug flow in microchannels, Experimental Thermal and Fluid Science, 88, 2017. Crossref

  8. Usov E V, Lobanov P D, Pribaturin N A, Chuhno V I, Kutlimetov A E, Svetonosov A I, Numerical simulation of gas volume motion during the gas injection into liquid metal coolant, Journal of Physics: Conference Series, 899, 2017. Crossref

  9. Lou Wenqiang, Wang Zhiyuan, Pan Shaowei, Sun Baojiang, Zhang Jianbo, Chen Wang, Prediction model and energy dissipation analysis of Taylor bubble rise velocity in yield stress fluid, Chemical Engineering Journal, 396, 2020. Crossref

  10. Etminan Amin, Muzychka Yuri S., Pope Kevin, Film Thickness and Pressure Drop for Gas-Liquid Taylor Flow in Microchannels , Journal of Fluid Flow, Heat and Mass Transfer, 2021. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain