Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering

Impact factor: 1.103

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v7.i3.20
pages 187-194

Effects of Sample Geometry on the Uniaxial Tensile Stress State at the Nanoscale

Steffen Brinckmann
Department of Materials Science, California Institute of Technology, Pasadena, CA 91125
J.-Y. Kim
Department of Materials Science, California Institute of Technology, Pasadena, CA 91125
A. Jennings
Department of Materials Science, California Institute of Technology, Pasadena, CA 91125
J. R. Greer
Department of Materials Science, California Institute of Technology, Pasadena, CA 91125

ABSTRACT

Uniaxial compression of micro- and nanopillars is frequently used to elicit plastic size effects in single crystals. Uniaxial tensile experiments on nanoscale materials have the potential to enhance the understanding of the experimentally widely observed strength increase. Further- more, these experiments allow for investigations into the in-strength and to help to study tension-compression asymmetry. The sample geometry might influence mechanical proper- ties, and to investigate this dependence, we demonstrate two methods of uniaxial nanotensile sample fabrication. We compare the experimentally obtained tensile stress-strain response for cylindrical and square nanopillars and provide finite element method simulation results and discuss the initiation of plastic yielding in these nanosamples.

REFERENCES

  1. Uchic, M. D., Dimiduk, D. M., Florando, J. N., and Nix, W. D., Sample dimensions influence strength and crystal plasticity. DOI: 10.1126/science.1098993

  2. Greer, J. R., Oliver, W. C., and Nix, W. D., Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. DOI: 10.1016/j.actamat.2004.12.031

  3. Greer, J. R., and Nix, W. D., Nanoscale gold pillars strengthened through dislocation starvation. DOI: 10.1103/PhysRevB.73.245410

  4. Volkert, C. A., and Lilleodden, E. T., Size effects in the deformation of submicron au columns. DOI: 10.1080/14786430600567739

  5. Kiener, D., Motz, C., Schöberl, T., Jenko, M., and Dehm, G., Determination of Mechanical properties of copper at the micron scale. DOI: 10.1002/adem.200600129

  6. Brinckmann, S., Kim, J. Y., and Greer, J. R., Fundamental differences in mechanical behavior between two types of crystals at nano-scale. DOI: 10.1103/PhysRevLett.100.155502

  7. Kim, Y. J., and Greer, J. R., Size-dependent mechanical properties of molybdenum nanopillars. DOI: 10.1063/1.2979684

  8. Ng, K. S., and Ngan, A. H.W., Stochastic nature of plasticity of aluminum micro-pillars. DOI: 10.1016/j.actamat.2007.12.016

  9. Rao, S. I., Dimiduk, D. M., Parthasarathy, T. A., Uchic, M. D., Tang, M., and Woodward, C., Athermal mechanisms of size-dependent crystal flow gleaned from three-dimensional discrete dislocation simulations. DOI: 10.1016/j.actamat.2008.03.011

  10. Weygand, D., Poignant, M., Gumbsch, P., and Kraft, O., Three-dimensional dislocation dynamics simulation of the influence of sample size on the stress-strain behavior of fcc single-crystalline pillars. DOI: 10.1016/j.msea.2006.09.183

  11. Zhu, T., Li, J., Samanta, A., Leach, A., and Gall, K., Temperature and strain rate dependence of surface dislocation nucleation. DOI: 10.1103/PhysRevLett.100.025502

  12. Brenner, S. S., Tensile strength of whiskers. DOI: 10.1063/1.1722294

  13. Kiener, D., Grosinger, W., Dehm, G., and Pippan, R., A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized singlecrystal copper samples. DOI: 10.1016/j.actamat.2007.10.015

  14. Li, J., The mechanics and physics of defect nucleation. DOI: 10.1557/mrs2007.48

  15. Nicola, L., Van der Giessen, E., and Needleman, A., Size effects in polycrystalline thin films analyzed by discrete dislocation plasticity. DOI: 10.1016/j.tsf.2004.12.012

  16. Weinberger, C. R., and Cai, W., Computing image stress in an elastic cylinder. DOI: 10.1016/j.jmps.2007.03.007

  17. Balint, D. S., Deshpande, V. S., Needleman, A., and Van der Giessen, E., Size effects in uniaxial deformation of single and polycrystals: a discrete dislocation plasticity analysis. DOI: 10.1088/0965-0393/14/3/005

  18. Tang, H., Schwarz, K. W., and Espinosa, H. D., Dislocation escape-related size effects in singlecrystal micropillars under uniaxial compression. DOI: 10.1016/j.actamat.2006.10.021

  19. Rao, S. I., Dimiduk, D. M., Tang, M., and Parthasarathy, T. A., Estimating the strength of single-ended dislocation sources in micronsized single crystals. DOI: 10.1080/14786430701591513

  20. Guruprasad, P. J., and Benzerga, A. A., Size effects under homogeneous deformation of single crystals: A discrete dislocation analysis. DOI: 10.1016/j.jmps.2007.03.009

  21. Kiener, D., Grosinger, W., and Dehm, G., On the importance of sample compliance in uniaxial microtesting. DOI: 10.1016/j.scriptamat.2008.09.024

  22. Csikor, F. F., Motz, C., Weygand, D., Zaiser, M., and Zapperi, S., Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. DOI: 10.1126/science.1143719

  23. Dimiduk, D. M., Woodward, C., LeSar, R., and Uchic, M. D., Scale-free intermittent flow in crystal plasticity. DOI: 10.1126/science.1123889