Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2015015486
pages 507-531

INTERACTIONS BETWEEN MULTIPLE ENRICHMENTS IN EXTENDED FINITE ELEMENT ANALYSIS OF SHORT FIBER REINFORCED COMPOSITES

Matthew G. Pike
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
Mason A. Hickman
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
Caglar Oskay
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA

ABSTRACT

This manuscript presents an extended finite element method (XFEM) approach to capture the interactions between fibers in short fiber reinforced composites. Short fiber inclusions are incorporated into the XFEM framework as deformable elastic zero measure objects. Two separate enrichment functions are employed to account for both the presence of fibers within the composite domain and to idealize the progressive debonding along fiber matrix interfaces. This study investigates the accuracy characteristics of the formulation when multiple fiber enrichments and interface debonding enrichments lie within a single element. Accurately capturing multiple enrichments in a single element is particularly important for modeling the failure process of fiber reinforced composites with a significant amount of discontinuous fibers with high aspect ratios. The performance of the proposed XFEM model is assessed by comparing model predictions to the direct finite element method for various interacting fiber configurations. The numerical verification studies indicated that the proposed model displays high accuracy and captures the debonding interactions at fiber-matrix interfaces.


Articles with similar content:

Crack-Centered Enrichment for Debonding in Two-Phase Composite Applied to Textile Reinforced Concrete
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 4
Jakub Jerabek, Frank Peiffer, Rostislav Chudoba
MULTILEVEL DYNAMIC MESH REFINEMENT FOR MODELING TRANSIENT SPRAY AND MIXTURE FORMATION
Atomization and Sprays, Vol.19, 2009, issue 8
Song-Charng Kong, Qingluan Xue
Multiscale Model for Damage Analysis in Fiber-Reinforced Composites with Interfacial Debonding
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Somnath Ghosh, Prasanna Raghavan
ACCURATE PARALLELIZED SOLUTION FOR COUPLED DOMAINS: THE FDEM (FINITE DIFFERENCE ELEMENT METHOD) WITH DIVIDING LINES/SURFACES
ICHMT DIGITAL LIBRARY ONLINE, Vol.4, 2001, issue
Torsten Adolph, Willi Schonauer
NONLOCAL GRADIENT-DEPENDENT CONSTITUTIVE MODEL FOR SIMULATING LOCALIZED DAMAGE AND FRACTURE OF VISCOPLASTIC SOLIDS UNDER HIGH-ENERGY IMPACTS
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 5
Anthony N. Palazotto, Rashid K. Abu Al-Rub