Library Subscription: Guest
International Journal for Multiscale Computational Engineering

Published 6 issues per year

ISSN Print: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Multiscale Simulation of Hall Discharge

Volume 4, Issue 2, 2006, pp. 243-254
DOI: 10.1615/IntJMultCompEng.v4.i2.50
Get accessGet access

ABSTRACT

Non-Maxwellian behavior and plasma-wall interaction are key processes in the physics of Hall thrusters. For this purpose, a 2D{r,z}-3V axisymmetric fully kinetic particle-in-cell/Monte Carlo collision (PIC-MCC) model of the acceleration channel including the process of secondary electron emission (SEE) from the dielectric walls has been developed. In order to make the simulation possible with regard to the computational time due to the different electron and neutral time scale, a reduction of the thruster dimension was done. This was derived from a new physics-based scaling law. This model has demonstrated its outstanding capability in improving the physics insight into the processes in a stationary plasma thruster (SPT) and in reproducing experimental data accurately.

CITED BY
  1. Taccogna F., Longo S., Capitelli M., Schneider R., Particle-in-Cell Simulation of Stationary Plasma Thruster, Contributions to Plasma Physics, 47, 8-9, 2007. Crossref

  2. Taccogna F, Schneider R, Longo S, Capitelli M, Kinetic simulations of a plasma thruster, Plasma Sources Science and Technology, 17, 2, 2008. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain