Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v1.i1.30
10 pages

A Nonlocal Formulation of Rubber Elasticity

Catalin Picu
Department of Mechanical Engineering Rensselaer Polytechnic Institute Troy, NY, 12180, USA

ABSTRACT

A nonlocal formulation of rubber elasticity with applications to nanostructured materials is developed. In general, stress has an entropic and an energetic component. The energetic component is due to short-range interactions of the representative atom with its neighbors, while the entropic component is due to chain conformation changes upon deformation. In rubbers, the entropic component is dominant. Both components are intrinsically nonlocal; stress at a point depends on the deformation in an entire neighborhood of that point. This property becomes important when the deformation field varies significantly over a distance comparable with the internal length scale of the material (large gradients). Here, nonlocal formulations are derived for both the energetic and the entropic components of stress for a system of polymeric chains. For small deformations, linear nonlocal elasticity may be used for the energetic component of stress, and a kernel may be derived within the integral formalism of nonlocal elasticity. The entropic component is highly nonlinear and no kernel may be separated. The implications of considering a nonlocal description for nanostructured materials in place of the conventional local one are discussed.


Articles with similar content:

Multiscale Modeling for Planar Lattice Microstructures with Structural Elements
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Ken Ooue, Isao Saiki, Kenjiro Terada, Akinori Nakajima
Analysis and Numerical Simulation of Discontinuous Displacements Modeling Fine Scale Damage in a Continuum Under Mixed-Mode Loading
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Krishna Garikipati
A Virtual Atom Cluster Approach to the Mechanics of Nanostructures
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 2
Dong Qian, Rohit H. Gondhalekar
Iterative Algorithms for Computing the Averaged Response of Nonlinear Composites under Stress-Controlled Loadings
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Takahiro Yamada
A Study on the Collapse of Self-Similar Hardening Behavior of Nanostructures
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 3
Yong Gan, Zhen Chen