Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v9.i2.10
pages 137-148

A NOVEL PHYSICAL APPROACH FOR MODELING PLASTIC DEFORMATION IN THIN MICROWIRES

H. Farahmand
Department of Mechanical Engineering, Islamic Azad University of Kerman Branch, Kerman, Iran
Ali Reza Saidi
Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
S. Arabnejad
Young Researchers Club, Kerman branch, Islamic Azad University, Kerman, Iran

ABSTRACT

Several experimental results contribute to the effects of length scale parameters. Most models for these experimental data are developed based on strain gradient theory. Compared with the scale of dislocation movement and hardening mechanisms, which are used to model the physical-based strain gradient, plastic deformation in microstructures is sufficiently large, so that finite plasticity theory could be well justified. Therefore, the main objective of this work is to develop a strain gradient theory with the cooperation of dislocation theory and finite plastic as a new constitutive equation. This procedure is accomplished with the intrinsic length scale relation, which is dedicated to the phenomenological development of plasticity laws for microstructures in finite plasticity. It is a new process of expressing the plastic deformation result for microstructures. Finally, the result of this new theory is indicated for microwires.

REFERENCES

  1. Abu Al-Rub, R. K. and Voyiadjis, G. Z., Determination of the material intrinsic length scale of gradient plasticity theory. DOI: 10.1615/IntJMultCompEng.v2.i3.30

  2. Abu Al-Rub, R. K. and Voyiadjis, G. Z., A physically based gradient plasticity theory. DOI: 10.1016/j.ijplas.2005.04.010

  3. Abu Al-Rub, R. K. and Voyiadjis, G. Z., Gradient plasticity theory with a variable length scale parameter. DOI: 10.1016/j.ijsolstr.2004.12.010

  4. Abu Al-Rub, R. K. and Voyiadjis, G. Z., A direct finite element implementation of the gradient plasticity theory. DOI: 10.1002/nme.1303

  5. Aifantis, E. C., On the microstructural origin of certain inelastic models. DOI: 10.1115/1.3225725

  6. Arsenlis, A. and Parks, D. M., Crystallographic aspects of geometrically-necessary and statistically stored dislocation density. DOI: 10.1016/S1359-6454(99)00020-8

  7. Ashby, M. F., The deformation of plastically non-homogeneous materials. DOI: 10.1080/14786437008238426

  8. Bammann, D. J., A model of crystal plasticity containing a natural length scale. DOI: 10.1016/S0921-5093(00)01614-2

  9. Bammann, D. J. and Aifantis, E. C., On a proposal for a continuum with microstructure. DOI: 10.1007/BF01295573

  10. Bazant, Z. P. and Pijaudier-Cabot, G., Nonlocal continuum damage, localization instability and convergence. DOI: 10.1115/1.3173674

  11. Beaudoin, A. J. and Acharya, A., A model for rate-dependent flow of metal polycrystals based on the slip plane lattice incompatibility. DOI: 10.1016/S0921-5093(00)01620-8

  12. Cermelli, P. and Gurtin, M. E., On the characterization of geometrically necessary dislocation. DOI: 10.1016/S0022-5096(00)00084-3

  13. Chambon, R., Caillerie, D., and Tamagnini, C., A strain space gradient plasticity for finite strain. DOI: 10.1016/j.cma.2003.10.016

  14. de Borst, R. and Mülhaus, H.-B., Gradient-dependent plasticity formulation and algorithmic aspects. DOI: 10.1002/nme.1620350307

  15. de Borst, R. and Pamin, J., Some novel developments in finite element procedures for gradient-dependent plasticity. DOI: 10.1002/(SICI)1097-0207(19960730)39:14<2477::AID-NME962>3.0.CO;2-E

  16. de Borst, R., Sluys, L. J., M&uuml;lhaus, H.-B., and Pamin, J., Fundamental issues in finite element analysis of localization of deformation. DOI: 10.1108/eb023897

  17. Eringen, A. C., Theory of micropolar elasticity.

  18. Eringen, A. C. and Edelen, D. G. B., On non-local elasticity.

  19. Estrin, Y. and Mecking, H., A unified phenomenological description of work-hardening and creep based on one-parameter models. DOI: 10.1016/0001-6160(84)90202-5

  20. Fleck, N. A. and Hutchinson, J. W., Strain gradient plasticity.

  21. Fleck, N. A. and Hutchinson, J. W., A reformulation of strain gradient plasticity. DOI: 10.1016/S0022-5096(01)00049-7

  22. Fleck, N. A., Muller, G. M., Ashby, M. F., and Hutchinson, J. W., Strain gradient plasticity: Theory and experiment. DOI: 10.1016/0956-7151(94)90502-9

  23. Fremond, M. and Nedjar, B., Damage, gradient of damage and principle of virtual power. DOI: 10.1016/0020-7683(95)00074-7

  24. Gao, H. and Huang, Y., Taylor-based nonlocal theory of plasticity. DOI: 10.1016/S0020-7683(00)00173-6

  25. Gao, H., Huang, Y., Nix, W. D., and Hutchinson, J. W., Mechanism-based strain gradient plasticity. Part I: Theory. DOI: 10.1016/S0022-5096(98)00103-3

  26. Gao, H., Huang, Y., and Nix, W. D., Modeling plasticity at the micrometer scale. DOI: 10.1007/s001140050665

  27. Haque, M. A. and Saif, M. T. A., Strain gradient effect in nanoscale thin films. DOI: 10.1016/S1359-6454(03)00116-2

  28. Huang, Y., Gao, H., Nix, W. D., and Hutchinson, J. W., Mechanism-based strain gradient plasticity. Part II: Analysis.

  29. Hwang, K. C., Jiang, H., Huang, Y., Gao, H., and Hu, N., A finite deformation theory of strain gradient plasticity. DOI: 10.1016/S0022-5096(01)00020-5

  30. Hwang, K. C., Jiang, H., Huang, Y., and Gao, H., Finite deformation analysis of mechanism-based strain gradient plasticity: Torsion and crack tip field. DOI: 10.1016/S0749-6419(01)00039-0

  31. Khun, A. K. and Hung, S., Continuum Theory of Plasticity.

  32. Kocks, U. F., A statistical theory of flow stress and work hardening. DOI: 10.1080/14786436608212647

  33. Kocks, U. F., Laws for work-hardening and low-temperature creep.

  34. Kubin, L. P. and Estrin, Y., Evolution for dislocation densities and the critical conditions for the Portevin–Le Chatelier effect.

  35. Lasry, D. and Belytschko, T., Localization limiters in transient problems. DOI: 10.1016/0020-7683(88)90059-5

  36. Madec, R., Devincre, B., and Kubin, L. P., Simulation of dislocation patterns in multislip. DOI: 10.1016/S1359-6462(02)00185-9

  37. Mindlin, R. D., Micro-structure in linear elasticity. DOI: 10.1007/BF00248490

  38. Mughrabi, H., On the role of strain gradients and long-range internal stresses in the composite model of crystal plasticity. DOI: 10.1016/S0921-5093(01)01173-X

  39. Nix, W. D. and Gao, H., Indentation size effects in crystalline materials: A law for strain gradient plasticity. DOI: 10.1016/S0022-5096(97)00086-0

  40. Nye, J. F., Some geometrical relations in dislocated crystals. DOI: 10.1016/0001-6160(53)90054-6

  41. Pijaudier-Cabot, T. G. P. and Bazant, Z. P., Nonlocal damage theory. DOI: 10.1061/(ASCE)0733-9399(1987)113:10(1512)

  42. Polizzotto, C., A nonlocal strain gradient plasticity theory for finite deformation. DOI: 10.1016/j.ijplas.2008.09.009

  43. Stolken, J. S. and Evans, A. G., A microbend test method for measuring the plasticity length-scale. DOI: 10.1016/S1359-6454(98)00153-0

  44. Voyiadjis, G. Z., Deliktas, B., and Aifantis, E. C., Multi-scale analysis of multiple damage mechanisms coupled with inelastic behavior of composite materials. DOI: 10.1061/(ASCE)0733-9399(2001)127:7(636)

  45. Voyiadjis, G. Z., Abu Al-Rub, R. K., and Palazotto, A. N., Non-local coupling of viscoplasticity and anisotropic viscodamage for impact problems using the gradient theory.

  46. Voyiadjis, G. Z., Abu Al-Rub, R. K., and Palazotto, A. N., Thermodynamic formulations for non-local coupling of viscoplasticity and anisotropic viscodamage for dynamic localization problems using gradient theory.

  47. Zbib, H. M. and Aifantis, E. C., On the localization and postlocalization behavior of plastic deformation. Part I: On the initiation of shears bands.

  48. Zbib, H. M. and Aifantis, E. C., On the localization and postlocalization behavior of plastic deformation. Part II: On the evolution and thickness of shear bands.

  49. Zbib, H. M. and Aifantis, E. C., On the localization and postlocalization behavior of plastic deformation. Part III: On the structure and velocity of Portevin–Le Chatelier bands.


Articles with similar content:

COMPUTATIONAL CONTINUA FOR THICK ELASTIC LAYERED STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 5
Vasilina Filonova, Jacob Fish
VISCOELASTIC PLASTIC MODEL AND EXPERIMENTAL VALIDATION FOR A GRANULAR ENERGETIC MATERIAL
International Journal of Energetic Materials and Chemical Propulsion, Vol.13, 2014, issue 4
Arnaud Frachon, Didier Picart, Abdelkibir Benelfellah, Michael Caliez, Michel Gratton
A Variationally Consistent Formulation of Nonlocal Plasticity
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
Fabio De Angelis
Multiscale Modeling of Composite Materials by a Multifield Finite Element Approach
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
Patrizia Trovalusci, V. Sansalone, F. Cleri
Crack-Centered Enrichment for Debonding in Two-Phase Composite Applied to Textile Reinforced Concrete
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 4
Jakub Jerabek, Frank Peiffer, Rostislav Chudoba