Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v9.i2.60
pages 215-229

CONVERGENCE AND STABILITY IN UPSCALING OF FLOW WITH INERTIA FROM THE PORESCALE TO MESOSCALE

Malgorzata Peszynska
Department of Mathematics, Oregon State University, USA
Anna Trykozko
University ofWarsaw, Interdisciplinary Center for Mathematical and Computational Modelling, 02-106 Warsaw, Poland

ABSTRACT

We propose an algorithm for computational upscaling of flow with inertia from porescale (microscale) to Darcy scale (laboratory scale, mesoscale). In particular, we solve the Navier-Stokes equations in complex pore geometries and average their solutions to derive properties of flow relevant at the laboratory scale in the non-Darcy model of flow. Convergence and stability of the algorithm are discussed. The project is a prototype of a computational laboratory for porous media that delivers the data for the non-Darcy model with inertia at the mesoscale.

REFERENCES

  1. Ainsworth, M. and Tinsley Oden, J., A posteriori error estimation in finite element analysis. DOI: 10.1016/S0045-7825(96)01107-3

  2. Andrade, J. S., Costa, U. M. S., Almeida, M. P., Makse, H. A., and Stanley, H. E., Inertial effects on fluid flow through disordered porous media. DOI: 10.1103/PhysRevLett.82.5249

  3. Arbogast, T., Wheeler, M. F., and Yotov, I., Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite differences. DOI: 10.1137/S0036142994262585

  4. Batchelor, G. K., An Introduction to Fluid Dynamics. DOI: 10.1017/CBO9780511800955

  5. Bear, J., Dynamics of Fluids in Porous Media.

  6. Bensoussan, A., Lions, J.-L., and Papanicolaou, G., Asymptotic analysis for periodic structures.

  7. Bourgeat, A., Marusic-Paloka, E., and Mikelic, A., Weak nonlinear corrections for Darcy’s law. DOI: 10.1142/S021820259600047X

  8. Chen, Z., Lyons, S. L., and Qin, G., Derivation of the Forchheimer law via homogenization. DOI: 10.1023/A:1010749114251

  9. Chen, Y., Durlofsky, L. J., Gerritsen, M., and Wen, X. H., A coupled local global upscaling approach for simulating flow in highly heterogeneous formations. DOI: 10.1016/S0309-1708(03)00101-5

  10. Cho, K. J., Kim, M.-U., and Shin, H. D., Linear stability of two–dimensional steady flow in wavy–walled channels. DOI: 10.1016/S0169-5983(98)00003-3

  11. Coulaud, O., Morel, P., and Caltagirone, J. P., Numerical modelling of nonlinear effects in laminar flow through a porous medium. DOI: 10.1017/S0022112088001375

  12. Dullien, F. L., Porous Media.

  13. Durlofsky, L. J., Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. DOI: 10.1029/91WR00107

  14. Elman, H. C., Silvester, D. J., and Wathen, A. J., Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics.

  15. Ergun, S., Fluid flow through packed columns.

  16. Ewing, R. E., Lazarov, R. D., Lyons, S. L., Papavassiliou, D. V., Pasciak, J., and Qin, G., Numerical well model for non-darcy flow through isotropic porous media. DOI: 10.1023/A:1011543412675

  17. Fluent, Fluent User’s Guide, Version 6.3.

  18. Forchheimer, P., Wasserbewegung durch Boden.

  19. Fourar, M., Lenormand, R., Karimi-Fard, M., and Horne, R., Inertia effects in high-rate flow through heterogeneous porous media. DOI: 10.1007/s11242-004-6800-6

  20. Garibotti, C. R. and Peszynska, M., Upscaling non-Darcy flow. DOI: 10.1007/s11242-009-9369-2

  21. Giorgi, T., Derivation of Forchheimer law via matched asymptotic expansions. DOI: 10.1023/A:1006533931383

  22. Huang, H. and Ayoub, J., Applicability of the Forchheimer equation for non-Darcy flow in porous media. DOI: 10.2118/102715-PA

  23. Irmay, S., On theoretical derivation of Darcy and Forchheimer fomulas. DOI: 10.1029/TR039i004p00702

  24. Lindquist, W. B., Network flow model studies and 3D pore structure.

  25. Mahmud, S., Sadrul Islam, A. K. M., and Mamun, M. A. H., Separation characteristics of fluid flow inside two parallel plates with wavy surface. DOI: 10.1016/S0020-7225(02)00029-0

  26. Mei, C. C. and Auriault, J.-L., The effect of weak inertia on flow through a porous medium. DOI: 10.1017/S0022112091001258

  27. Moes, N., Tinsley Oden, J., Vemaganti, K., and Remacle, J.-F., Simplified methods and a posteriori error estimation for the homogenization of representative volume elements (RVE). DOI: 10.1016/S0045-7825(98)00341-7

  28. Pan, C., Hilpert, M., and Miller, C. T., Pore-scale modeling of saturated permeabilities in random sphere packings. DOI: 10.1103/PhysRevE.64.066702

  29. Patankar, S. V., Numerical Heat Transfer and Fluid Flow Fluent Software.

  30. Peaceman, D. W., Fundamentals of Numerical Reservoir Simulation.

  31. Peszynska, M., Trykozko, A., and Sobieski, W., Forchheimer law in computational and experimental studies of flow through porous media at porescale and mesoscale.

  32. Peszynska, M., Trykozko, A., and Kennedy, K., Sensitivity to anisotropy in non–Darcy flow model from porescale through mesoscale.

  33. Peszynska, M., Trykozko, A., and Augustson, K., Computational upscaling of inertia effects from porescale to mesoscale. DOI: 10.1007/978-3-642-01970-8_69

  34. Russell, T. F. and Wheeler, M. F., Finite element and finite difference methods for continuous flows in porous media.

  35. Sanchez-Palencia, E., Nonhomogeneous media and vibration theory. DOI: 10.1007/3-540-10000-8_5

  36. Schaap, M. G., Porter, M. L., Christensen, B. S. B., andWildenschild, D., Comparison of pressure-saturation characteristics derived from computed tomography and lattice boltzmann simulations. DOI: 10.1029/2006WR005730

  37. Scheidegger, A. E., The Physics of Flow through Porous Media.

  38. Succi, S., The lattice Boltzmann equation for fluid dynamics and beyond.

  39. Tartar, L., Incompressible fluid flow in a porous medium–convergence of the homogenization process.

  40. Wesseling, P., Principles of computational fluid dynamics. DOI: 10.1007/978-3-642-05146-3_10

  41. Zijl, W. and Trykozko, A., Numerical homogenization of the absolute permeability using the conformal-nodal and mixed-hybrid finite element method. DOI: 10.1023/A:1010776124186


Articles with similar content:

Numerical Modelling of Heat and Fluid Flow in a Porous Medium
International Heat Transfer Conference 10, Vol.13, 1994, issue
Fujio Kuwahara, Hideharu Koyama, Akira Nakayama
Study of Various Estimates of the Macroscopic Tangent Operator in the Incremental Homogenization of Elastoplastic Composites
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 4
Olivier Pierard, Issam Doghri
BRINKMAN'S FILTRATION OF FLUID IN RIGID POROUS MEDIA: MULTISCALE ANALYSIS AND INVESTIGATION OF EFFECTIVE PERMEABILITY
Composites: Mechanics, Computations, Applications: An International Journal, Vol.6, 2015, issue 3
A. N. Vlasov, Alexey Talonov, Dmitriy B. Volkov-Bogorodsky, Viktoria Savatorova
NUMERICAL SIMULATION OF FREE FALL AND CONTROLLED GRAVITY DRAINAGE PROCESSES IN POROUS MEDIA
Journal of Porous Media, Vol.15, 2012, issue 3
Sohrab Zendehboudi, Maurice B. Dusseault, Ioannis Chatzis, Ali Shafiei
A PENALIZATION METHOD TO TREAT THE INTERFACE BETWEEN A FREE-FLUID REGION AND A FIBROUS POROUS MEDIUM
Journal of Porous Media, Vol.22, 2019, issue 9
Christophe Airiau, Alessandro Bottaro, Nicola Luminari, Giuseppe A. Zampogna