Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v9.i2.70
pages 231-241

MECHANO-CHEMICAL SIMULATION OF SOLID TUMOR DYNAMICS FOR THERAPY OUTCOME PREDICTIONS

Sven Hirsch
Department of Electrical Engineering, ETH, CH-8092 Zürich, Switzerland
Dominik Szczerba
Computer Vision Laboratory, ETH; IT'IS Foundation, Switzerland
Bryn Lloyd
Department of Electrical Engineering, ETH, CH-8092 Zürich, Switzerland
Michael Bajka
Division of Gynecology, University Hospital of Zürich, Switzerland
Niels Kuster
IT'IS Foundation, CH-8004 Zürich, Switzerland
Gabor Szekely
Department of Electrical Engineering, ETH, CH-8092 Zürich, Switzerland

ABSTRACT

Experimental investigations of tumors often result in data reflecting very complex underlying mechanisms. Computer models of such phenomena enable their analysis and may lead to novel and more efficient therapy strategies. We present a generalized finite-element mechano-chemical model of a solid tumor and assess its suitability for predicting therapy outcome. The model includes hosting tissue, tumor cells (vital and necrotic), nutrient (oxygen), blood vessels, and a growth inhibitor. At a certain time instant of the tumor development virtual therapies are performed and their outcomes are presented. The model parameters are obtained either directly from the available literature or estimated using multi-scale modeling. First results indicate the usefulness of multi-physics tumor models for predicting therapy response. In the proposed model a regression of a manifest tumor after therapy may be observed.

REFERENCES

  1. Agrawal, R., Conway, G. S., Sladkevicius, P., Payne, N. N., Bekir, J., Campbell, S., Tan, S. L., and Jacobs, H. S., Serum vascular endothelial growth factor (VEGF) in the normal menstrual cycle: Association with changes in ovarian and uterine Doppler blood flow. DOI: 10.1046/j.1365-2265.1999.00618.x

  2. Agrawal, R., Prelevic, G., Conway, G. S., Payne, N. N., Ginsburg, J., and Jacobs, H. S., Serum vascular endothelial growth factor concentrations in postmenopausal women: The effect of hormone replacement therapy. DOI: 10.1016/S0015-0282(99)00476-8

  3. Alarcon, T., Byrne, H. M., and Maini, P. K., Towards whole-organ modelling of tumour growth. DOI: 10.1016/j.pbiomolbio.2004.02.004

  4. Alarcon, T., Byrne, H. M., and Maini, P. K., A multiple scale model for tumor growth. DOI: 10.1137/040603760

  5. Anderson, A. R. and Chaplain, M. A., Continuous and discrete mathematical models of tumor-induced angiogenesis. DOI: 10.1006/bulm.1998.0042

  6. Araujo, R. P. and McElwain, D. L. S., A history of the study of solid tumour growth: The contribution of mathematical modelling. DOI: 10.1016/j.bulm.2003.11.002

  7. Bellomo, N., Li, N., and Maini, P, On the foundation of cancer modelling: Selected topics, speculations, and perspectives. DOI: 10.1142/S0218202508002796

  8. Borkenstein, K., Levegrun, S., and Peschke, P., Modeling and computer simulations of tumor growth and tumor response to radiotherapy. DOI: 10.1667/RR3193

  9. Byrne, H. M., Alarcon, T., Owen, M. R., Webb, S. D., and Maini, P. K., Modelling aspects of cancer dynamics: A review. DOI: 10.1098/rsta.2006.1786

  10. Carmeliet, P. and Jain, R. K., Angiogenesis in cancer and other diseases. DOI: 10.1038/35025220

  11. Chaplain, M. A. J., Graziano, L., and Preziosi, L., Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development. DOI: 10.1093/imammb/dql009

  12. Cristini, V., Li, X. R., Lowengrub, J. S., and Wise, S. M., Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching. DOI: 10.1007/s00285-008-0215-x

  13. Folkman, J., Role of angiogenesis in tumor growth and metastasis. DOI: 10.1016/S0093-7754(02)70065-1

  14. Frieboes, H. B., Edgerton, M. E., Fruehauf, J. P., Rose, F. R. A. J., Worrall, L. K., Gatenby, R. A., Ferrari, M., and Cristini, V., Prediction of drug response in breast cancer using integrative experimental/computational modeling. DOI: 10.1158/0008-5472.CAN-08-3740

  15. Gabhann, F. M. and Popel, A. S., Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: A computational model of human skeletal muscle. DOI: 10.1152/ajpheart.00637.2006

  16. Gordon, V. D., Valentine, M. T., Gardel, M. L., Andor-Ardo, D., Dennison, S., Bogdanov, A. A.,Weitz, D. A., and Deisboeck, T. S., Measuring the mechanical stress induced by an expanding multicellular tumor system: A case study. DOI: 10.1016/S0014-4827(03)00256-8

  17. Graziano, L. and Preziosi, L., Mechanics in tumor growth. DOI: 10.1007/978-0-8176-4411-6_7

  18. Hanahan, D. and Weinberg, R. A., The hallmarks of cancer. DOI: 10.1016/S0092-8674(00)81683-9

  19. Hockel, M., Schlenger, K., Knoop, C., and Vaupel, P., Oxygenation of carcinomas of the uterine cervix: Evaluation by computerized O2 tension measurements.

  20. Ji, J. W., Tsoukias, N. M., Goldman, D., and Popel, A. S., A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis. DOI: 10.1016/j.jtbi.2005.11.019

  21. Lloyd, B. A., Szczerba, D., and Szekely, G., A coupled finite element model of tumor growth and vascularization. DOI: 10.1007/978-3-540-75759-7_106

  22. Lloyd, B. A., Szczerba, D., Rudin, M., and Szekely, G., A computational framework for modelling solid tumour growth. DOI: 10.1098/rsta.2008.0092

  23. Macklin, P., McDougall, S., Anderson, A. R. A., Chaplain, M. A. J., Cristini, V., and Lowengrub, J., Multiscale modelling and nonlinear simulation of vascular tumour growth. DOI: 10.1007/s00285-008-0216-9

  24. Mayer, A., Hockel, M., Wree, A., Leo, C., Horn, L.-C., and Vaupel, P., Lack of hypoxic response in uterine leiomyomas despite severe tissue hypoxia. DOI: 10.1158/0008-5472.CAN-07-6339

  25. Salathe, E. P. and Xu, Y. H., Non-linear phenomena in oxygen transport to tissue. DOI: 10.1007/BF00160332

  26. Sim, B. K., MacDonald, N. J., and Gubish, E. R., Angiostatin and endostatin: Endogenous inhibitors of tumor growth. DOI: 10.1023/A:1026551202548

  27. Sinek, J. P., Sanga, S., Zheng, X., Frieboes, H. B., Ferrari, M., and Cristini, V., Predicting drug pharmacokinetics and effect in vascularized tumors using computer simulation. DOI: 10.1007/s00285-008-0214-y

  28. Stamatakos, G. S., Zacharaki, E. I., Uzunoglu, N. K., and Nikita, K. S., Tumor growth and response to irradiation in vitro: A technologically advanced simulation model.

  29. Stamatakos, G. S., Antipas, V. P., and Uzunoglu, N. K., A spatiotemporal, patient individualized simulation model of solid tumor response to chemotherapy in vivo: The paradigm of glioblastoma multiforme treated by temozolomide. DOI: 10.1109/TBME.2006.873761

  30. Stokes, C. L., Rupnick, M. A., Williams, S. K., and Lauffenburger, D. A., Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor.

  31. Szczerba, D. and Szekely, G., Simulating vascular systems in arbitrary anatomies. DOI: 10.1007/11566489_79

  32. Szczerba, D. and Szekely, G., Macroscopic modeling of vascular systems. DOI: 10.1007/3-540-45787-9_36

  33. Szczerba, D., Lloyd, B., Bajka, M., and Szekely, G., A multiphysics model of myoma growth. DOI: 10.1007/978-3-540-69387-1_21

  34. Tee, D. and DiStefano, J., Simulation of tumor-induced angiogenesis and its response to anti-angiogenic drug treatment: Mode of drug delivery and clearance rate dependencies.

  35. Wise, S. M., Lowengrub, J. S., Frieboes, H. B., and Cristini, V., Three-dimensional multispecies nonlinear tumor growth–i model and numerical method. DOI: 10.1016/j.jtbi.2008.03.027


Articles with similar content:

State of the Art in Computer-Assisted Planning, Intervention, and Assessment of Liver-Tumor Ablation
Critical Reviews™ in Biomedical Engineering, Vol.38, 2010, issue 1
Christian Schumann, Tobias Preusser, Andreas Weihusen, Jennifer Bieberstein, Stephan Zidowitz, Jan Hendrik Moltz, Christian Rieder
Nanoparticles in Pancreatic Cancer Imaging and Therapy
Critical Reviews™ in Oncogenesis, Vol.24, 2019, issue 2
Bhaskar V.K.S. Lakkakula, Gayathri Chalikonda, Saikrishna Lakkakula
Emerging Immunotherapies for Cancer and Their Potential for Application in Pediatric Oncology
Critical Reviews™ in Oncogenesis, Vol.20, 2015, issue 3-4
Crystal L. Mackall, Rimas J. Orentas
Review on 4D Models for Organ Motion Compensation
Critical Reviews™ in Biomedical Engineering, Vol.40, 2012, issue 2
Dirk Boye, Christine Tanner, Golnoosh Samei, Gabor Szekely
A MULTISCALE/MULTIDOMAIN MODEL FOR THE FAILURE ANALYSIS OF MASONRY WALLS: A VALIDATION WITH A COMBINED FEM/DEM APPROACH
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 4
Patrizia Trovalusci, L. Leonetti, Antonella Cecchi, Emanuele Reccia