Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.554 SNIP: 0.82 CiteScore™: 2

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2011002139
pages 65-82


Xu Zhang
California State University Northridge
Yi Zhao
Department of Physics and Astronomy, California State University Northridge, Northridge, CA
Gang Lu
Department of Physics and Astronomy, California State University Northridge, Northridge, CA


We have introduced two quantum mechanics/molecularmechanics approaches for materials modeling. One is based onquantum mechanical coupling and the other on mechanicalcoupling. The formalism of both approaches is described indetail. The validations of the methods are demonstrated in termsof atomic and electronic structure. Finally, the applications ofthe methods are surveyed, including applications in vacancyclusters, dislocations, nanoindentations, and fractures.


  1. Becquart, C. S., Kim, D., Rifkin, J. A., and Clapp, P. C., Fracture properties of metals and alloys from molecular-dynamics simulations. DOI: 10.1016/0921-5093(93)90371-K

  2. Bernstein, N., Mehl, M. J., Papaconstantopoulos, D. A., Papanicolaou, N. I., Bazant, M. Z., and Kaxiras, E., Energetic, vibrational, and electronic properties of silicon using a nonorthogonal tight-binding model. DOI: 10.1103/PhysRevB.62.4477

  3. Bernstein, N. and Hess, D. W., Lattice trapping barriers to brittle fracture. DOI: 10.1103/PhysRevLett.91.025501

  4. Bernstein, N., Kermode, J. R., and Csanyi, G., Hybrid atomistic simulation methods for materials systems. DOI: 10.1088/0034-4885/72/2/026501

  5. Buehler, M. J., Tang, H., van Duin, A. C. T., and Goddard III, W. A., Threshold crack speed controls dynamical fracture of silicon single crystals. DOI: 10.1103/PhysRevLett.99.165502

  6. Carling, K., Wahnström, G., Mattsson, T., Sandberg, N., and Grimvall, G., Vacancy concentration in Al from combined firstprinciples and model potential calculations. DOI: 10.1103/PhysRevB.67.054101

  7. Choly, N., Lu, G., E,W., and Kaxiras, E., Multiscale simulations in simple metals: A Density-functional-based methodology. DOI: 10.1103/PhysRevB.71.094101

  8. Clementi, E. and Rotti, C., Atomic Data and Nuclear Data Tables.

  9. Csányi, G., Albaret, T., Payne, M. C., and DeVita, A., Learn on the fly: A hybrid classical and quantum-mechanical molecular dynamics simulation. DOI: 10.1103/PhysRevLett.93.175503

  10. Daw, M. S. and Baskes, M. I., Embedded-atom method–derivation and application to impurities, surfaces, and other defects in metals. DOI: 10.1103/PhysRevB.29.6443

  11. Fermi, E., Eine statistiche methode zur bestimmung einiger eigenschaften des atoms und ihre anwendung auf die theorie des periodischen systems der elemente. DOI: 10.1007/BF01351576

  12. Gao, J. L. and Truhlar, D. G., Quantum mechanical methods for enzyme kinetics. DOI: 10.1146/annurev.physchem.53.091301.150114

  13. Garcia-Gonzalez, P., Alvarellos, J. E., and Chacon, E., Nonlocal kinetic-energy-density functionals. DOI: 10.1103/PhysRevB.53.9509

  14. Hollerbauer, W. and Karnthaler, H. P., Beitr. Elektronenmikroskop. Direktabb. Oberfl.

  15. Johnson, R. A., Analytic nearest-neighbor model for fcc metals. DOI: 10.1103/PhysRevB.37.3924

  16. Kerdcharoen, T., Liedl, K. R., and Rode, B. M., A Qm/mm simulation method applied to the solution of Li+ in liquid ammonia. DOI: 10.1016/0301-0104(96)00152-8

  17. Kohlhoff, S., Gumbsch, P., and Fischmeister, H. F., Crack-propagation in bcc crystals studied with a combined finite-element and atomistic model. DOI: 10.1080/01418619108213953

  18. Kohn, W. and Sham, L. J., Self-consistent equations including exchange and correlation effects. DOI: 10.1103/PhysRev.140.A1133

  19. Kresse, G. and Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. DOI: 10.1103/PhysRevB.54.11169

  20. Kresse, G. and Furthmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. DOI: 10.1016/0927-0256(96)00008-0

  21. Lin, H. and Truhlar, D. G., QM/MM: what have we learned, where are we, and where do we go from here?. DOI: 10.1007/s00214-006-0143-z

  22. Liu, Y., Lu, G., Chen, Z. Z., and Kioussis, N., An improved QM/MM approach for metals. DOI: 10.1088/0965-0393/15/3/006

  23. Lu, G. and Kaxiras, E., Handbook of Theoretical and Computational Nanotechnology.

  24. Mara, W. C., Herring, R. B., and Hunt, L. P., Handbook of Semiconductor Silicon Technology.

  25. Martin, R. M., Electronic Structure: Basic Theory and Practical Methods.

  26. Mills, M. J., Daw, M.S., and Foiles, S. M., High-resolution transmission electron-microscopy studies of dislocation cores in metals and intermetallic compounds. DOI: 10.1016/0304-3991(94)90148-1

  27. Mordasini, T. and Thiel, W., Combined quantum mechanical and molecular mechanical approaches.

  28. Peng, Q., Zhang, X., Hung, L., Carter, E. A., and Lu, G., Quantum simulation of materials at micron scales and beyond. DOI: 10.1103/PhysRevB.78.054118

  29. Peng, Q., Zhang, X., and Lu, G., Quantum mechanical simulations of nanoindentation of Al thin film. DOI: 10.1016/j.commatsci.2009.11.002

  30. Savage, M. F., Srinivasan, R., Daw, M. S., Lograsso, T., and Mills, M. J., Dislocation processes and deformation behavior in (Fe,Ni)-Al single crystals. DOI: 10.1016/S0921-5093(98)00911-3

  31. Sherwood, P., Modern methods and algorithms of quantum chemistry.

  32. Solt, I., Kulhanek, P., Simon, I., Winfield, S., Payne, MC., Csanyi, G., and Fuxreiter, M., Evaluating Boundary Dependent Errors in QM/MM Simulations. DOI: 10.1021/jp807277r

  33. Stillinger, F. H. and Weber, T. A., Computer-simulation of local order in condensed phase of silicon. DOI: 10.1103/PhysRevB.31.5262

  34. Svensson, M., Humbel, S., Froese, R. D. J., Matsubara, T., Sieber, S., and Morokuma, K., ONIOM: A multilayered integrated mo+mm method for geometry optimizations and single point energy predictions. A test for diels-alder reactions and Pt(P(t- Bu)(3))(2)+H-2 oxidative addition. DOI: 10.1021/jp962071j

  35. Tadmor, E. B., Ortiz, M., and Phillips, R., Quasicontinuum analysis of defects in solids. DOI: 10.1080/01418619608243000

  36. Thomas, L. H., The calculation of atomic fields. DOI: 10.1017/S0305004100011683

  37. von Weizsacker, C. F., Zur theorie de Kernmassen. DOI: 10.1007/BF01337700

  38. Wang, L. W. and Teter, M. P., Kinetic-energy functional of the electron-density. DOI: 10.1103/PhysRevB.45.13196

  39. Wang, Y. A., Govind, N., and Carter, E. A., Orbital-free kinetic-energy density functionals with a density-dependent kernel. DOI: 10.1103/PhysRevB.60.16350

  40. Wang, Y. A., Govind, N., and Carter, E. A., Orbital-free kinetic-energy density functionals with a density-dependent kernel.

  41. Woo, T. K., Margl, P. M., Deng, L., Cavallo, L., and Ziegler, T., Towards more realistic computational modeling of homogenous catalysis by density functional theory: combined QM/MM and ab initio molecular dynamics. DOI: 10.1016/S0920-5861(98)00483-0

  42. Zhang, X. and Lu, G., Quantum mechanics/molecular mechanics methodology for metals based on orbital-free density functional theory. DOI: 10.1103/PhysRevB.76.245111

  43. Zhang, X. and Lu, G., Electronic origin of void formation in fcc metals. DOI: 10.1103/PhysRevB.77.174102

  44. Zhang, X., Wang, C. Y., and Lu, G., Electronic structure analysis of self-consistent embedding theory for quantum/molecular mechanics simulations. DOI: 10.1103/PhysRevB.78.235119

  45. Zhang, X. and Lu, G., Calculation of fast pipe diffusion along a dislocation stacking fault ribbon. DOI: 10.1103/PhysRevB.82.012101

Articles with similar content:

Multiscale Simulations of Triblock Copolymers
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 3-4
James Snyder, Peter W. Chung, Jan Andzelm, Frederick L. Beyer
A Micropillar Compression Simulation by a Multiscale Plastic Model Based on 3-D Discrete Dislocation Dynamics
International Journal for Multiscale Computational Engineering, Vol.7, 2009, issue 3
X. M. Liu, Yuan Gao, Zhuo Zhuang, X. C. You, Z. L. Liu
Computational Modeling of Ligament Mechanics
Critical Reviews™ in Biomedical Engineering, Vol.29, 2001, issue 3
John C. Gardiner, Jeffrey A. Weiss
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 2
Adam Mrozek, Tadeusz Burczynski
Joon Sik Lee, Jae Sik Jin