Library Subscription: Guest
International Journal for Multiscale Computational Engineering

Published 6 issues per year

ISSN Print: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

COMPUTATIONAL APPLICATIONS IN MASONRY STRUCTURES: FROM THE MESO-SCALE TO THE SUPER-LARGE/SUPER-COMPLEX

Volume 18, Issue 1, 2020, pp. 1-30
DOI: 10.1615/IntJMultCompEng.2020030889
Get accessDownload

ABSTRACT

Masonry structures constitute a large portion of the built heritage around the world, from the past until today. Therefore, understanding their structural behavior is crucial for preserving the historical characteristics of many buildings and in addressing the requirements for housing and sustainable development. Due to its composite and highly nonlinear nature, the analysis of masonry structures has been a challenge for engineers. This article presents a set of advanced models for the mechanical study of masonry, including the usual micro-modeling approaches (the masonry constituents, unit and joint, are represented separately), macro-modeling (masonry constituents are smeared in a homogeneous composite), and multi-scale techniques (upscaling from micro to macro is adopted). An extensive overview of its computational features is provided. The engineering application of such strategies is presented and covers problems from the masonry components level (meso-scale) to the structural element itself, and ultimately to the level of monumental buildings (super-large). The structural safety assessment and/or strengthening schemes evaluation are performed amid the static, slow dynamics or earthquakes, and fast dynamics or impact and blast ranges.

REFERENCES
  1. ABAQUS, Finite Element Analysis (Theory Manual), Release 6.6 (software), Providence: RI: Dassault Systemes Simulia Corporation, 2013.

  2. Adam, J.M., Brencich, A., Hughes, T.G., and Jefferson, T., Micromodelling of Eccentrically Loaded Brickwork: Study of Masonry Wallettes, Eng. Struct, vol. 30, no. 5, pp. 1244-1251,2010. DOI: 10.1016/j.engstruct.2009.12.050.

  3. Anthoine, A., Derivation of the In-Plane Elastic Characteristics of Masonry through Homogenization Theory, Int. J. Solids Struct., vol. 32, no. 2, pp. 137-163,1995. DOI: 10.1016/0020-7683(94)00140-R.

  4. Baylot, J.T., Bullock, B., Slawson, T.R., and Woodson, S.C., Blast Response of Lightly Attached Concrete Masonry Unit Walls, J. Struct. Eng., vol. 131, no. 8, pp. 1186-1193,2005. DOI: 10.1061/(ASCE)0733-9445(2005)131:8(1186).

  5. Baylot, J.T. and Bevins, T.L., Effect of Responding and Failing Structural Components on the Airblast Pressures and Loads on and inside of the Structure, Comp. Struct., vol. 85, no. 11, pp. 891-910,2007. DOI: 10.1016/j.compstruc.2007.01.001.

  6. Bazant, Z.P. and Oh, B.H., Crack Band Theory for Fracture of Concrete, Materiaux Constructions, vol. 16, no. 3, pp. 155-177, 1983. DOI: 10.1007/BF02486267.

  7. Bazant, Z.P., Xiang, Y., and Prat, P.C., Microplane Model for Concrete. I: Stress-Strain Boundaries and Finite Strain, J. Eng. Mechan, vol. 122, no. 3, pp. 245-254,1996. DOI: 10.1061/(ASCE)0733-9399(1996)122:3(245).

  8. Berto, L., Saetta, A., Scotta, R., and Vitaliani, R., An Orthotropic Damage Model for Masonry Structures, Int. J. Numer. Methods Eng., vol. 55, no. 2, pp. 127-157,2002. DOI: 10.1002/nme.495.

  9. Blanco, P.J., Sanchez, P.J., de Souza Neto, E.A., and Feijoo, R.A., Variational Foundations and Generalized Unified Theory of RVE-Based Multiscale Models, Arch. Comput. Methods Eng., vol. 23, no. 2, pp. 191-253, 2016. DOI: 10.1007/s11831-014-9137-5.

  10. de Borst, R., Remmers, J.J., and Needleman, A., Mesh-Independent Discrete Numerical Representations of Cohesive-Zone Models, Eng. Fracture Mechan, vol. 73, no. 2, pp. 160-177,2006. DOI: 10.1016/j.engfracmech.2005.05.007.

  11. Buchan, P.A. and Chen, J.F., Blast Resistance of FRP Composites and Polymer Strengthened Concrete and Masonry Structures - A State-of-the-Art Review, Compos. PartB: Eng., vol. 38, no. 5, pp. 509-522,2006. DOI: 10.1016/j.compositesb.2006.07.009.

  12. De Buhan, P. and De Felice, G., A Homogenisation Approach to the Ultimate Strength of Brick Masonry, J. Mechan. Phys. Solids, vol. 45, no. 7, pp. 1085-1104,1996. DOI: 10.1016/S0022-5096(97)00002-1.

  13. Burnett, S., Gilbert, M., Molyneaux, T., Beattie, G., and Hobbs, B., The Performance of Unreinforced Masonry Walls Subjected to Low-Velocity Impacts: Finite Element Analysis, Int. J. Impact Eng., vol. 34, no. 8, pp. 1433-1450, 2007. DOI: 10.1016/j.ijimpeng.2006.08.004.

  14. Calio, I., Marletta, M., and Panto, B., A New Discrete Element Model for the Evaluation of the Seismic Behaviour of Unreinforced Masonry Buildings, Eng. Struct, 40, pp. 327-338,2012. DOI: 10.1016/j.engstruct.2012.02.039.

  15. Calvi, G.M., Pinho, R., Magenes, G., Bommer, J.J., Restrepo-Velez, L.F., and Crowley, H., Development of Seismic Vulnerability Assessment Methodologies over the past 30 Years, ISETJ. Earthquake Technol., vol. 43, no. 3, pp. 75-104,2006.

  16. Candeias, P.X., Campos Costa, A., Mendes, N., Costa, A.A., and Lourenco, P.B., Experimental Assessment of the Out-of-Plane Performance of Masonry Buildings through Shaking Table Tests, Int. J. Architectural Heritage, vol. 11, no. 1, pp. 1-28,2017. DOI: 10.1080/15583058.2016.1238975.

  17. Casolo, S., Rigid Element Model for Non-Linear Analysis of Masonry Facades Subjected to Out-of-Plane Loading, Commun. Numer. Methods Eng., vol. 15, no. 7, pp. 457-468,1999.

  18. Casolo, S. and Milani, G., A Simplified Homogenization-Discrete Element Model for the Non-Linear Static Analysis of Masonry Walls Out-of-Plane Loaded, Eng. Struct., vol. 32, no. 8, pp. 2352-2366,2010. DOI: 10.1016/j.engstruct.2010.04.010.

  19. Casolo, S. and Uva, G., Nonlinear Analysis of Out-of-Plane Masonry Facades: Full Dynamic versus Pushover Methods by Rigid Body and Spring Model, Earthquake Eng. Struct. Dynam., vol. 42, no. 4, pp. 499-521,2013. DOI: 10.1002/eqe.2224.

  20. Cecchi, A. and Milani, G., A Kinematic FE Limit Analysis Model for Thick English Bond Masonry Walls, Int. J. Solids Struct., vol. 45, no. 5, pp. 1302-1331,2008. DOI: 10.1016/j.ijsolstr.2007.09.019.

  21. Cecchi, A. and Sab, K., Out of Plane Model for Heterogeneous Periodic Materials: The Case of Masonry, European J. Mechan.- A/Solids, vol. 21, no. 5, pp. 715-746,2002. DOI: 10.1016/S0997-7538(02)01243-3.

  22. Cervera, M. and Chiumenti, M., Mesh Objective Tensile Cracking via a Local Continuum Damage Model and a Crack Tracking Technique, Comp. Methods Appl. Mechan. Eng., vol. 196, nos. 1-3, pp. 304-20,2006. DOI: 10.1016/j.cma.2006.04.008.

  23. Cundall, P.A. and Hart, P., A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rock Systems, in Proc. Symp. Rock Fracture (ISRM), Nancy, France, vol. 1, Paper No. II-8,1971.

  24. D'Ayala, D. and Speranza, E., Definition of Collapse Mechanisms and Seismic Vulnerability of Historic Masonry Buildings, Earthquake Spectra, vol. 19,no. 3, pp. 479-509,2003. DOI: 10.1193/1.1599896.

  25. D'Ayala, D. and Shi, Y., Modeling Masonry Historic Buildings by Multi-Body Dynamics, Int. J. Architectural Heritage, vol. 5, nos. 4-5,pp. 483-512,2011. DOI: 10.1080/15583058.2011.557138.

  26. Dennis, S.T., Baylot, J.T., and Woodson, S.C., Woodson. Response of 1/4-Scale Concrete Masonry Unit (CMU) Walls to Blast, J. Eng. Mechan, vol. 128,no.2,pp. 134-142,2002. DOI: 10.1061/(ASCE)0733-9399(2002)128:2(134).

  27. Dhanasekar, M., Kleeman, P.W., and Page, A.W., The Failure of Brick Masonry under Biaxial Stresses, Proc. Institut Civil Engineers, vol. 79, no. 2, pp. 295-313,1985. DOI: 10.1680/iicep.1985.992.

  28. DIANA, TNO. User's Manual Version 10.2, Delft, The Netherlands. BV, Delft, The Netherlands: TNO DIANA 10.2,2017.

  29. Duvaut, G. and Lions, J.L., Les Inequations En Mecanique et En Physique, P. Dunod, Ed., New York, 1972.

  30. Frankie, T.M., Gencturk, B., and Elnashai, A.S., Simulation-Based Fragility Relationships for Unreinforced Masonry Buildings, J Struct. Eng., vol. 139, no. 3, pp. 400-410,2013. DOI: 10.1061/(ASCE)ST.1943-541X.0000648.

  31. Geers, M.G.D., Kouznetsova, V.G., and Brekelmans, W.A.M., Multi-Scale Computational Homogenization: Trends and Challenges, J. Comput. Appl. Mathemat, vol. 234, no. 7, pp. 2175-2182,2010. DOI: 10.1016/j.cam.2009.08.077.

  32. Georgin, J.F. and Reynouard, J.M., Modeling of Structures Subjected to Impact: Concrete Behaviour under High Strain Rate, Cement Concrete Compos., vol. 25,no. 1,pp. 131-143,2003. DOI: 10.1016/S0958-9465(01)00060-9.

  33. Giambanco, G., Rizzo, S., and Spallino, R., Numerical Analysis of Masonry Structures via Interface Models, Comp. Methods Appl. Mechan. Eng., vol. 190, nos. 49-50, pp. 6493-6511,2001. DOI: 10.1016/S0045-7825(01)00225-0.

  34. Gilbert, M., Hobbs, B., and Molyneaux, T.C.K., The Performance of Unreinforced Masonry Walls Subjected to Low-Velocity Impacts: Experiments. Int. J Impact Eng., vol. 27, no. 3, pp. 231-251,2002. DOI: 10.1016/S0734-743X(01)00049-5.

  35. Grassl, P. andJirasek, M., Damage-Plastic Model for Concrete Failure. Int. J. Solids Struct., vol. 43, no. 22, pp. 7166-7196,2006. DOI: 10.1016/j.ijsolstr.2006.06.032.

  36. Greco, F., Leonetti, L., Luciano, R., and Trovalusci, P., Multiscale Failure Analysis of Periodic Masonry Structures with Traditional and Fiber-Reinforced Mortar Joints, Compos. PartB: Eng., vol. 118, pp. 75-95,2017. DOI: 10.1016/j.compositesb.2017.03.004.

  37. Griffith, M.C. and Magenes, G., Evaluation of Out-of-Plane Stability of Unreinforced Masonry Walls Subjected to Seismic Excitation, J. Earthquake Eng., vol. 7,no. 141,pp. 141-169,2003.

  38. Guragain, R., Worakanchana, K., Mayorca, P., and Meguro, K., Simulation of Brick Masonry Wall Behavior under Cyclic Loading Using Applied Element Method, JSCE Struct. Eng./Earthquake Eng., vol. 58, no. 6, pp. 531-534, 2006. DOI: 10.11188/seisankenkyu.58.531.

  39. Hao, H. and Tarasov, B.G., Experimental Study of Dynamic Material Properties of Clay Brick and Mortar at Different Strain Rates, Australian J. Struct. Eng., vol. 8, no. 2, p. 117,2008.

  40. Hao, Y. and Hao, H., Numerical Investigation of the Dynamic Compressive Behaviour of Rock Materials at High Strain Rate, Rock Mechan. Rock Eng., vol. 46, no. 2, pp. 373-388,2013. DOI: 10.1007/s00603-012-0268-4.

  41. Hao, Y., Hao, H., and Li, Z.X., Influence of End Friction Confinement on Impact Tests of Concrete Material at High Strain Rate, Int. J. Impact Eng., vol. 60, pp. 82-106,2013. DOI: 10.1016/j.ijimpeng.2013.04.008.

  42. Hendry, E.A.W., Masonry Walls: Materials and Construction, Construction Building Mater., vol. 15, no. 8, pp. 323-330, 2001. DOI: 10.1016/S0950-0618(01 )00019-8.

  43. Herbert, D.M., Gardner, D.R., Harbottle, M., and Hughes, T.G., Uniform Lateral Load Capacity of Small-Scale Masonry Wall Panels, Mater. Struct., vol. 47, no. 5, pp. 805-818,2014. DOI: 10.1617/s11527-013-0092-7.

  44. Hill, R., A Self-Consistent Mechanics of Composite Materials, J. Mechan. Phys. Solids, vol. 13, no. 4, pp. 213-222, 1965. DOI: 10.1016/0022-5096(65)90010-4.

  45. Kawai, T., New Discrete Models and Their Application to Seismic Response Analysis of Structures, Int. J. Nuclear Eng. Design, vol. 48, no. 1, pp. 207-229,1978. DOI: 10.1016/0029-5493(78)90217-0.

  46. Konstantinidis, D. and Makris, N., The Dynamics of a Rocking Block in Three Dimensions, Proc. 8th HSTAM International Congress on Mechanics, pp. 12-14,2007.

  47. Lagomarsino, S., Penna, A., Galasco, A., and Cattari, S., TREMURI Program: An Equivalent Frame Model for the Nonlinear Seismic Analysis of Masonry Buildings, Eng. Struct, vol. 56, pp. 1787-1799,2013. DOI: 10.1016/j.engstruct.2013.08.002.

  48. Lee, J. and Fenves, G.L., Plastic-Damage Model for Cyclic Loading of Concrete Structures, J. Eng. Mechan., vol. 124, no. 8, pp. 892-900,1998. DOI: 10.1061/(ASCE)0733-9399(1998)124:8(892).

  49. Lemos, J.V., Discrete Element Modeling of Masonry Structures, Int. J. Architectural Heritage, vol. 1, no. 2, pp. 190-213, 2007. DOI: 10.1080/15583050601176868.

  50. Leonetti, L., Trovalusci, P., and Cechi, A., A Multiscale/Multidomain Model for the Failure Analysis of Masonry Walls: A Validation with a Combined FEM/DEM Approach, Int. J. Multiscale Comput. Eng., vol. 16, no. 4, pp. 325-343, 2018. DOI: 10.1615/IntJMultCompEng .2018026988.

  51. Linz, P., A Critique of Numerical Analysis, Bull. Am. Mathemat. Soc, vol. 19, pp. 407-416, 1998. DOI: 10.1090/S0273-0979-1988-15682-0.

  52. Lotfi, H.R. and Shing, P.B., Interface Model Applied to Fracture of Masonry Structures, J. Struct. Eng., vol. 120, no. 1, pp. 63-80, 1994. DOI: 10.1061/(ASCE)0733-9445(1994)120:1(63).

  53. Lourenco, P.B., Computational Strategies for Masonry Structures, PhD, Delft University of Technology, Delft, The Netherlands, 1996.

  54. Lourenco, P.B., An Anisotropic Macro-Model for Masonry Plates and Shells: Implementation and Validation, TNO Building and Construction Research-Computational Mechanics, Report no. 03.21.1.31.07, pp. 34-91,1997.

  55. Lourenco, P.B., Anisotropic Softening Model for Masonry Plates and Shells, J. Struct. Eng., vol. 126, no. 9, pp. 1008-1016,2000. DOI: 10.1061/(ASCE)0733-9445(2000)126:9(1008).

  56. Lourenco, P.B., Recent Advances in Masonry Structures: Micromodelling and Homogenisation, in Multiscale Modeling in Solid Mechanics, Computational and Experimental Methods in Structures, Imperial College Press, vol. 3, pp. 251-294,2009. DOI: 10.1142/p604.

  57. Lourenco, P.B., De Borst, R., and Rots, J.G., A Plane Stress Softening Plasticity Model for Orthotropic Materials, Int. J. Numer. Methods Eng, vol. 40, no. 21, pp. 4033-4057, 1997. DOI: 10.1002/(SICI)1097-0207(19971115)40:21<4033::AID-NME248>3.0.CO;2-0.

  58. Lourenco, P.B. and Rots, J.G., Multisurface Interface Model for Analysis of Masonry Structures, J. Eng. Mechan., vol. 123, no. 7, pp. 660-668,1997. DOI: 10.1061/(ASCE)0733-9399(1997)123:7(660).

  59. Lubliner, J., Oliver, J., Oller, S., and Onate, E., A Plastic-Damage Model for Concrete, Int. J. Solids Struct., vol. 25, no. 3, pp. 299-326,1989. DOI: 10.1016/0020-7683(89)90050-4.

  60. Macorini, L. and Izzuddin, B.A., A Non-Linear Interface Element for 3D Mesoscale Analysis of Brick-Masonry Structures, Int. J. Numer. Methods Eng, vol. 85,no. 12, pp. 1584-1608,2011. DOI: 10.1002/nme.3046.

  61. Macorini, L. and Izzuddin, B.A., Nonlinear Analysis of Unreinforced Masonry Walls under Blast Loading Using Mesoscale Partitioned Modeling, J. Struct. Eng, vol. 140,no. 8, 2014. DOI: 10.1061/(ASCE)ST.1943-541X.0000931.

  62. Macorini, L. and Izzuddin, B.A., Nonlinear Analysis of Masonry Structures Using Mesoscale Partitioned Modelling, Adv. Eng. Software, vols. 60-61, pp. 58-69,2013. DOI: 10.1016/j.advengsoft.2012.11.008.

  63. Malomo, D., Pinho, R., and Penna, A., Using the Applied Element Method for Modelling Calcium Silicate Brick Masonry Subjected to In-Plane Cyclic Loading, Earthquake Eng. Struct. Dynam., vol. 47, no. 7, pp. 1610-1630, 2018. DOI: 10.1002/eqe.3032.

  64. Meguro, K. and Tagel-Din, H., Applied Element Method for Structural Analysis: Theory and Application for Linear Materials, JSCE Struct. Eng./EarthquakeEng., vol. 17, no. 1, pp. 21-35,2000.

  65. Milani, G., Lourenco, P.B., and Tralli, A., Homogenised Limit Analysis of Masonry Walls, Part II: Structural Examples, Comp. Struct., vol. 84, nos. 3-4, pp. 181-195,2006. DOI: 10.1016/j.compstruc.2005.09.004.

  66. Milani, G., 3D Upper Bound Limit Analysis of Multi-Leaf Masonry Walls, Int. J. Mechan. Sci., vol. 50, no. 4, pp. 817-836,2008. DOI: 10.1016/j.ijmecsci.2007.11.003.

  67. Milani, G., Lourenco, P.B., and Tralli, A., Homogenization Approach for the Limit Analysis of Out-of-Plane Loaded Masonry Walls, J Struct. Eng., vol. 132,no. 10,pp. 1650-1663,2006. DOI: 10.1061/(ASCE)0733-9445(2006)132:10(1650).

  68. Milani, G. and Tralli, A., Simple SQP Approach for Out-of-Plane Loaded Homogenized Brickwork Panels, Accounting for Softening, Comp. Struct., vol. 89,nos. 1-2,pp. 201-215,2011. DOI: 10.1016/j.compstruc.2010.09.005.

  69. Nard, H.L. and Bailly, P., Dynamic Behaviour of Concrete: The Structural Effects on Compressive Strength Increase, Mechan. Cohesive-Frictional Mater., vol. 5, no. 6, pp. 491-510, 2000. DOI: 10.1002/1099-1484(200008)5:6<491::AID-CFM106>3.0.CO;2-R.

  70. New Zealand Government, NZS 1170.5: 2004 Structural Design Actions - Part 5: Earthquake Design Actions - New Zealand, 2004.

  71. Otero, F., Oller, S., Martinez, X., and Salomon, O., Numerical Homogenization for Composite Materials Analysis. Comparison with Other Micro Mechanical Formulations, Compos. Struct., vol. 122, pp. 405-416, 2015. DOI: 10.1016/j.compstruct.2014.11.041.

  72. Pandey, A.K., Kumar, R., Paul, D.K., and Trikha, D.N., Non-Linear Response of Reinforced Concrete Containment Structure under Blast Loading, Nuclear Eng. Design, vol. 236, no. 9, pp. 993-1002,2006. DOI: 10.1016/j.nucengdes.2005.09.015.

  73. Panto, B., Cannizzaro, F., Calio, I., and Lourenco, P.B., Numerical and Experimental Validation of a 3D Macro-Model for the In-Plane and Out-of-Plane Behavior of Unreinforced Masonry Walls, Int. J. Architectural Heritage, vol. 11, no. 7, pp. 946-964, 2017. DOI: 10.1080/15583058.2017.1325539.

  74. Pau, A. and Trovalusci, P., Block Masonry as Equivalent Micropolar Continua: The Role of Relative Rotations, Acta Mechanica, vol. 223, no. 7, pp. 1455-1471,2012. DOI: 10.1007/s00707-012-0662-8.

  75. Pereira, J.M., Campos, J., and Lourenco, P.B., Masonry Infill Walls under Blast Loading Using Confined Underwater Blast Wave Generators (WBWG), Eng. Struct., vol. 92, pp. 69-83,2015. DOI: 10.1016/j.engstruct.2015.02.036.

  76. Pereira, J.M. and Lourenco, P.B., Experimental Characterization of Masonry and Masonry Components at High Strain Rates, J Mater. Civil Eng., vol. 29, no. 2, 2016a. DOI: 10.1061/(ASCE)MT.1943-5533.0001755.

  77. Pereira, J.M. and Lourenco, P.B., Experimental Bond Behaviour of GFRP and Masonry Bricks under Impulsive Loading, Mater. Struct., vol. 49, no. 11, pp. 4799-4811,2016b. DOI: 10.1617/s11527-016-0826-4.

  78. Petracca, M., Pela, L., Rossi, R., Oller, S., Camata, G., and Spacone, E., Regularization of First Order Computational Homogenization for Multiscale Analysis of Masonry Structures, Comput. Mechan., vol. 57, no. 2, pp. 257-276,2016. DOI: 10.1007/s00466-015-1230-6.

  79. Pontiroli, C., Rouquand, A., and Mazars, J., Predicting Concrete Behaviour from Quasi-Static Loading to Hypervelocity Impact, EuropeanJ. Environ. Civil Eng., vol. 14,nos. 6-7, pp. 703-727,2010. DOI: 10.1080/19648189.2010.9693259.

  80. Quagliarini, E., Maracchini, G., and Clementi, F., Uses and Limits of the Equivalent Frame Model on Existing Unreinforced Masonry Buildings for Assessing Their Seismic Risk: A Review, J. Building Eng., vol. 10, pp. 166-182, 2017. DOI: 10.1016/j.jobe.2017.03.004.

  81. Rafsanjani, S.H., Lourenco, P.B., and Peixinho, N., Implementation and Validation of a Strain Rate Dependent Anisotropic Continuum Model for Masonry, Int. J. Mechan. Sci., vol. 104, pp. 24-43,2015a. DOI: 10.1016/j.ijmecsci.2015.10.001.

  82. Rafsanjani, S.H., Lourenco, P.B., and Peixinho, N., Dynamic Interface Model for Masonry Walls Subjected to High Strain Rate Out-of-Plane Loads, Int. J. Impact Eng., vol. 76, pp. 28-37,2015b. DOI: 10.1016/j.ijimpeng.2014.09.002.

  83. Rafsanjani, S., High Strain Rate Constitutive Modeling for Historical Structures Subjected to Blast Loading, PhD, University of Minho, from http://hdl.handle.net/1822/38459,2015.

  84. Reccia, E., Leonetti, L., Trovalusci, P., and Cecchi, A., A Multiscale/Multidomain Model for the Failure Analysis of Masonry Walls: A Validation with a Combined FEM/DEM Approach, Int. J. Multiscale Comput. Eng., 16, no. 4, pp. 325-343, 2018. DOI: 10.1615/IntJMultCompEng .2018026988.

  85. Roca, P., Cervera, M., and Gariup, G., Structural Analysis of Masonry Historical Constructions. Classical and Advanced Approaches, Arch. Comput. Methods Eng., vol. 17,no. 3, pp. 299-325,2010. DOI: 10.1007/s11831-010-9046-1.

  86. Roca, P., Cervera, M., Pela, L., Clemente, R., and Chiumenti, M., Continuum FE Models for the Analysis of Mallorca Cathedral, Eng. Struct., vol. 46, pp. 653-670,2013. DOI: 10.1016/j.engstruct.2012.08.005.

  87. Rots, J.G., Nauta, P., Kusters, G., and Blaauwendraad, J., Smeared Crack Approach and Fracture Localization in Concrete, Heran, vol. 30, pp. 1-47,1985.

  88. Sarhosis, V., Tsavdaridis, K.D., and Giannopoulos, I., Discrete Element Modelling (DEM) for Masonry Infilled Steel Frames with Multiple Window Openings Subjected to Lateral Load Variations, Open Construct. Building Technol. J., vol. 8, no. 1, pp. 93-103,2014. DOI: 10.2174/1874836801408010093.

  89. Sejnoha, J., Sejnoha, M., Zeman, J., Sykora, J., and Vorel, J., A Mesoscopic Study on Historic Masonry, Struct. Eng. Mechan, vol. 30, no. 1,pp. 99-117,2008. DOI: 10.12989/sem.2008.30.1.099.

  90. Silva, L.C., Lourenco, P.B., and Milani, G., Rigid Block and Spring Homogenized Model (HRBSM) for Masonry Subjected to Impact and Blast Loading, Int. J. Impact Eng., vol. 109, pp. 14-28,2017a. DOI: 10.1016/j.ijimpeng.2017.05.012.

  91. Silva, L.C., Lourenco, P.B., and Milani, G., Nonlinear Discrete Homogenized Model for Out-of-Plane Loaded Masonry Walls, J. Struct. Eng., vol. 143, no. 9, p. 4017099,2017b. DOI: 10.1061/(ASCE)ST.1943-541X.0001831.

  92. Silva, L.C., Lourenco, P.B., and Milani, G., Derivation of the Out-of-Plane Behaviour of Masonry through Homogenization Strategies: Micro-Scale Level, Comp. Struct., vol. 209, pp. 30-43,2018. DOI: 10.1016/j.compstruc.2018.08.013.

  93. Silva, L.C., Mendes, N., Lourenco, P.B., and Ingham, J., Seismic Structural Assessment of the Christchurch Catholic Basilica, New Zealand, Structures, vol. 15, pp. 115-130,2018. DOI: 10.1016/j.istruc.2018.06.004.

  94. Sinha, B.P., A Simplified Ultimate Load Analysis of Laterally-Loaded Model Orthotropic Brickwork Panels of Low Tensile Strength, Struct. Eng. ASCE, vol. 56B, no. 4, pp. 81-84,1978.

  95. Sluys, L.J. and De Borst, R., Computational Modeling of Impact Tests on Steel Fibre Reinforced Concrete Beams, Heron, vol. 37, no. 4, pp. 3-15,1992.

  96. Spahn, J., Andra, H., Kabel, M., and Muller, R., A Multiscale Approach for Modeling Progressive Damage of Composite Materials Using Fast Fourier Transforms, Comp. Methods Appl. Mechan. Eng., vol. 268, pp. 871-883, 2014. DOI: 10.1016/j.cma.2013.10.017.

  97. Taliercio, A., Closed-Form Expressions for the Macroscopic in-Plane Elastic and Creep Coefficients of Brick Masonry, Int. J. Solids Struct., vol. 51, no. 17, pp. 2949-2963,2014. DOI: 10.1016/j.ijsolstr.2014.04.019.

  98. Theodossopoulos, D. and Sinha, B., A Review of Analytical Methods in the Current Design Processes and Assessment of Performance of Masonry Structures, Construct. Building Mater., vol. 41, pp. 990-1001, 2013. DOI: 10.1016/j.conbuildmat.2012.07.095.

  99. Tomazevic, M., Earthquake-Resistant Design of Masonry Buildings, vol. 1, World Scientific, 1999.

  100. Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M.L., and Murrali, A., Scale-Dependent Homogenization of Random Composites as Micropolar Continua, European J. Mechan.-A/Solids, vol. 49, pp. 396-407,2015. DOI: 10.1016/j.euromechsol.2014.08.010.

  101. Wu, C., Hao, H., and Lu, Y., Dynamic Response and Damage Analysis of Masonry Structures and Masonry Infilled RC Frames to Blast Ground Motion, Eng. Struct, vol. 27, no. 3, pp. 323-333,2005. DOI: 10.1016/j.engstruct.2004.10.004.

  102. Zapata, B.J., and Weggel, D., Collapse Study of an Unreinforced Masonry Bearing Wall Building Subjected to Internal Blast Loading, J Performance Constructed Facilities, vol. 22, no. 2, pp. 92-100,2008. DOI: 10.1061/(ASCE)0887-3828(2008)22:2(92).

  103. Zucchini, A. and Lourenco, P.B., A Micro-Mechanical Model for the Homogenisation of Masonry, Int. J. Solids Struct., vol. 39, no. 12, pp. 3233-3255,2002. DOI: 10.1016/S0020-7683(02)00230-5.

CITED BY
  1. Tomić Igor, Vanin Francesco, Božulić Ivana, Beyer Katrin, Numerical Simulation of Unreinforced Masonry Buildings with Timber Diaphragms, Buildings, 11, 5, 2021. Crossref

  2. Funari Marco Francesco, Silva Luis Carlos, Mousavian Elham, Lourenço Paulo B., Real-time Structural Stability of Domes through Limit Analysis: Application to St. Peter’s Dome, International Journal of Architectural Heritage, 2021. Crossref

  3. Godio Michele, Williams Portal Natalie, Flansbjer Mathias, Magnusson Johan, Byggnevi Magnus, Experimental and numerical approaches to investigate the out-of-plane response of unreinforced masonry walls subjected to free far-field blasts, Engineering Structures, 239, 2021. Crossref

  4. Aşıkoğlu Abide, Vasconcelos Graça, Lourenço Paulo B., Overview on the Nonlinear Static Procedures and Performance-Based Approach on Modern Unreinforced Masonry Buildings with Structural Irregularity, Buildings, 11, 4, 2021. Crossref

  5. Malomo Daniele, DeJong Matthew J., Post-fire collapse assessment of the bank buildings (Belfast, UK) masonry façade via discrete element macro-analysis, Structures, 35, 2022. Crossref

  6. Vadalà Federica, Cusmano Valeria, Funari Marco Francesco, Caliò Ivo, Lourenço Paulo B., On the use of a mesoscale masonry pattern representation in discrete macro-element approach, Journal of Building Engineering, 50, 2022. Crossref

  7. Gioffré M., Vincenzini A., Cavalagli N., Gusella V., Caponero M.A., Terenzi A., Pepi C., A novel hemp-fiber bio-composite material for strengthening of arched structures: Experimental investigation, Construction and Building Materials, 308, 2021. Crossref

  8. Malomo Daniele, DeJong Matthew J., A Macro‐Distinct Element Model (M‐DEM) for simulating in‐plane/out‐of‐plane interaction and combined failure mechanisms of unreinforced masonry structures, Earthquake Engineering & Structural Dynamics, 51, 4, 2022. Crossref

  9. da Silva Luis C. M., Milani Gabriele, A FE-Based Macro-Element for the Assessment of Masonry Structures: Linear Static, Vibration, and Non-Linear Cyclic Analyses, Applied Sciences, 12, 3, 2022. Crossref

  10. Giordano Nicola, Norris Alastair, Manandhar Vibek, Shrestha Liva, Paudel Dev R., Quinn Natalie, Rees Elizabeth, Shrestha Hima, Marasini Narayan P., Prajapati Rajani, Guragain Ramesh, De Luca Flavia, Sextos Anastasios, Financial assessment of incremental seismic retrofitting of Nepali stone-masonry buildings, International Journal of Disaster Risk Reduction, 60, 2021. Crossref

  11. Sharma S., Graziotti F., Magenes G., Torsional shear strength of unreinforced brick masonry bed joints, Construction and Building Materials, 275, 2021. Crossref

  12. Cutolo A. , Guarracino F. , Olivieri C. , Mascolo Ida, NONLINEAR FE ANALYSIS OF A MASONRY SPIRAL STAIRCASE IN NISIDA: A REFINED NUMERICAL CASE STUDY , International Journal for Multiscale Computational Engineering, 20, 5, 2022. Crossref

  13. Brando Giuseppe, Rapone Davide, Spacone Enrico, Giovanna Masciotta Maria, MUDis: A low computational effort multi-unit discretization procedure for modelling masonry walls with periodic arrangement, Structures, 43, 2022. Crossref

  14. Funari Marco Francesco, Pulatsu Bora, Szabó Simon, Lourenço Paulo B., A solution for the frictional resistance in macro-block limit analysis of non-periodic masonry, Structures, 43, 2022. Crossref

  15. Funari Marco F. , Silva Luís C., Savalle Nathanael , Lourenco Paulo B., A CONCURRENT MICRO/MACRO FE-MODEL OPTIMIZED WITH A LIMIT ANALYSIS TOOL FOR THE ASSESSMENT OF DRY-JOINT MASONRY STRUCTURES , International Journal for Multiscale Computational Engineering, 20, 5, 2022. Crossref

  16. Mudragada Ravi, Bhargava Pradeep, Masonry-Infilled RC Frames Exposed to Blast Loads: A Review on Numerical Modeling and Response, Practice Periodical on Structural Design and Construction, 27, 4, 2022. Crossref

  17. Colombo Carla, Savalle Nathanaël, Mehrotra Anjali, Funari Marco Francesco, Lourenço Paulo B., Experimental, numerical and analytical investigations of masonry corners: Influence of the horizontal pseudo-static load orientation, Construction and Building Materials, 344, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain