Library Subscription: Guest
International Journal for Multiscale Computational Engineering

Published 6 issues per year

ISSN Print: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Evaluating the Glass Transition Temperature of Polystyrene by an Experimentally Validated Molecular Dynamics Model

Volume 8, Issue 5, 2010, pp. 535-547
DOI: 10.1615/IntJMultCompEng.v8.i5.80
Get accessGet access

ABSTRACT

This paper develops a molecular dynamics model for studying physical properties of bulk polystyrene at different temperatures. This includes calculation of thermal expansion coefficient, mean-squared displacement, and free volume fraction as means of evaluating glass transition temperature for polystyrene. The force field for polystyrene has been borrowed from literature (TRaPPE potential), and a regular bulk system with periodic boundary conditions has been setup. The model is aimed at the calculation of free volume fraction in polystyrene, and the novelty lies in validation of positronium lifetime spectroscopy data. Both the mean void size and free volume fraction are obtained with a focus on the evolution of free volume and its distribution with changing temperatures.

REFERENCES
  1. Allen, M. P. and Tilsesley, D. J., Computer Simulation of Liquids.

  2. Auhl, R., Everaers, R., Grest, G. S., Kremer, K., and Plimpton, S. J., Equilibration of long chain polymer melts in computer simulations. DOI: 10.1063/1.1628670

  3. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W., Di- Nola, A., and Haak, J. R., Molecular dynamics with coupling to an external bath. DOI: 10.1063/1.448118

  4. Brown, D., Clarke, H. R., Okuda, M., and Yamazaki, T., The preparation of polymer melt samples for computer simulation studies. DOI: 10.1063/1.467111

  5. Buchholz, J., Paul, R., Varnik, F., and Binder, K., Cooling rate dependence of the glass transition temperature of polymer melts: Molecular dynamics study. DOI: 10.1063/1.1508366

  6. Cohen, M. H. and Turnbull, D. J., Molecular transport in liquids and glasses. DOI: 10.1063/1.1730566

  7. Faulon, J. L., Stochastic generator of chemical structure. 4. Building polymeric systems with specified properties. DOI: 10.1002/jcc.1030

  8. Flory, P. J., Statistical Mechanics of Chain Molecule.

  9. Fox, T. G. and Flory, P. J., Further studies on the melt viscosity of polyisobutylene. DOI: 10.1021/j150485a010

  10. Han, J., Gee, R. H., and Boyd, R. H., Glass transition temperatures of polymers from molecular dynamics simulations. DOI: 10.1021/ma00104a036

  11. Hans, J. and Boyd, R. H., Molecular packing and small-penetrant diffusion in polystyrene: a molecular dynamics simulation study. DOI: 10.1016/0032-3861(96)87295-8

  12. Harmandaris, V. A., Dirk, R., Nico, F., and Kremer, K., Comparison between coarse-graining models for polymer systems: Two mapping schemes for polystyrene. DOI: 10.1002/macp.200700245

  13. Jean, Y. C., Positron annihilation spectroscopy for chemical analysis: A novel probe for microstructural analysis of polymers. DOI: 10.1016/0026-265X(90)90027-3

  14. Kotelyanskii, M. and Theodorou, D. N., Simulation Methods for Polymers.

  15. Lui, J., Deng, Q., and Jean, Y. C., Free-volume distributions of polystyrene probed by positron annihilation: comparison with free-volume theories. DOI: 10.1021/ma00078a006

  16. Lyuyin, A. V. and Michels, M. A. J., Molecular dynamics simulation of bulk atactic polystyrene in the vicinity of T<sub>g</sub. DOI: 10.1021/ma011318u

  17. Lyuyin, A. V., Balabev, N. K., and Michels, M. A. J., Dynamic heterogeneity in miscible polymer blends with stiffness disparity:  computer simulations using the bond fluctuation model. DOI: 10.1021/ma034682x

  18. McKechnie, J. I., Brown, D., and Clarke, J. H. R., Methods of generating amorphous polymer samples for use in molecular dynamics simulations. DOI: 10.1021/ma00031a031

  19. Mondello, M., Yang, H., Furyaa, H., and Roe, R., Molecular dynamics simulation of atactic polystyrene 1. Comparison with X-ray scattering data. DOI: 10.1021/ma00091a018

  20. Osswald, T. and Menges, G., Mat. Sci of Polymers for Eng.

  21. Raffi, T. H. and Mansoori, G. A., Encyclopedia of Nanoscience and Nanotechnology.

  22. Rapold, R. F., Suter, U. W., and Theodorou, D. N., Static atomistic modelling of the structure and ring dynamics of bulk amorphous polystyrene. DOI: 10.1002/mats.1994.040030103

  23. Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. DOI: 10.1016/0021-9991(77)90098-5

  24. Smith,W. and Forester, T. J., A general-purpose parallel molecular dynamics simulation package. DOI: 10.1016/s0263-7855(96)00043-4

  25. Theodorou, D. N. and Suter, U. W., Detailed molecular structure of a vinyl polymer glass. DOI: 10.1021/ma00149a018

  26. Todorov, I. and Smith, W., The CCP5 national UK code for molecular dynamics simulation. DOI: 10.1098/rsta.2004.1419

  27. Toxvaerd, S., Molecular dynamics calculation of the equation of state of alkanes. DOI: 10.1063/1.458709

  28. Tsige, M. and Taylor, P. L., Simulation study of the glass transition temperature in poly (methyl methacrylate). DOI: 10.1103/PhysRevE.65.021805

  29. Wick, C. D., Martin, M. G., and Siepmann, J. I., Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes. DOI: 10.1021/jp001044x

  30. William, M. L., Landel, R. F., and Ferry, J. D., The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. DOI: 10.1021/ja01619a008

  31. Workum, K. V. and Pablo, J. J., computer simulation of the mechanical properties of amorphous polymer nanostructures. DOI: 10.1021/nl034458l

CITED BY
  1. Yang Fan, Ghosh Somnath, Lee L. James, Molecular dynamics simulation based size and rate dependent constitutive model of polystyrene thin films, Computational Mechanics, 50, 2, 2012. Crossref

  2. Srivastava Anand, Ghosh Somnath, Reduced-order molecular-dynamics model for polystyrene by equivalent-structure coarse graining, Physical Review E, 85, 2, 2012. Crossref

  3. Alleman Coleman, Srivastava Anand, Ghosh Somnath, Molecular dynamics simulations of the effects of carbon dioxide on the interfacial bonding of polystyrene thin films, Journal of Polymer Science Part B: Polymer Physics, 49, 16, 2011. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain