Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v7.i5.20
pages 395-408

Hierarchical Multiscale Modeling of Nanotube-Reinforced Polymer Composites

J. Ghanbari
Mechanical Engineering Department, Sharif University of Technology, 14588-89694 Tehran, Iran
R. Naghdabad
Mechanical Engineering Department, Sharif University of Technology, 14588-89694 Tehran, Iran

ABSTRACT

A finite element-based hierarchical multiscale modeling scheme is presented and used for the analysis of nanotube-reinforced polymer composites. The scheme presented here consists of micro- and macroscale boundary value problems linked together using a computational homogenization scheme. Using the presented hierarchical multiscale scheme, we have studied nanotube-reinforced polymer composites, and the elastic properties are determined. Using different representative volume elements (RVEs) representing different volume fractions of aligned nanotubes, the effect of the nanotube volume fraction and the existence of an interphase layer on the effective elastic modulus of the nanocomposite are studied. The results are compared with the micromechanical Halpin-Tsai equation, molecular dynamics simulations, and other available results. We have studied the stress concentration factor in the RVE, and it is shown that this factor is inversely proportional to the carbon nanotube volume fraction. Also, a nonlinear large deformation analysis has been carried out to study the global behavior of the nanocomposite, and a nonlinear relation between stress and strain has been observed.

REFERENCES

  1. Thostenson, E. T., Ren, Z. F., and Chou, T. W., Advances in the science and technology of carbon nanotubes and their composites: A review. DOI: 10.1016/S0266-3538(01)00094-X

  2. Thostenson, E. T., and Chou, T. W., On the elastic properties of carbon nanotube-based composites: Modelling and characterization. DOI: 10.1088/0022-3727/36/5/323

  3. Song, Y. S., and Youn, J. R., Modeling of effective elastic properties for polymer based carbon nanotube composites. DOI: 10.1016/j.polymer.2006.01.013

  4. Song, Y. S., and Youn, J. R., Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. DOI: 10.1016/j.carbon.2005.01.007

  5. Schadler, L. S., Giannaris, S. C., and Ajayan, P. M., Load transfer in carbon nanotube epoxy composites. DOI: 10.1063/1.122911

  6. Allaoui, A., Bai, S., Cheng, H. M., and Bai, J. B., Mechanical and electrical properties of a MWNT/epoxy composite. DOI: 10.1016/S0266-3538(02)00129-X

  7. Griebel, M., and Hamaekers, J., Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. DOI: 10.1016/j.cma.2003.12.025

  8. Odegard, G. M., Gates, T. S., Wise, K. E., Park, C., and Siochi, E. J., Constitutive modeling of nanotube-reinforced polymer composites. DOI: 10.1016/S0266-3538(03)00063-0

  9. Behfar, K., and Naghdabadi, R., Nanoscale vibrational analysis of a multi-layered graphene. DOI: 10.1016/j.compscitech.2004.11.011

  10. Behfar, K., and Naghdabadi, R., Nanoscale modeling of an embedded multi-shell fullerene and its application to vibrational analysis. DOI: 10.1016/j.ijengsci.2006.04.015

  11. Sohi, A. N., and Naghdabadi, R., Torsional buckling of carbon nanopeapods. DOI: 10.1016/j.carbon.2006.12.027

  12. Chen, X. L., and Liu, Y. J., Square representative volume elements for evaluating the effective material properties of carbon nanotube – based composites. DOI: 10.1016/S0927-0256(03)00090-9

  13. Fisher, F. T., Bradshaw, R. D., and Brinson, L. C., Fiber waviness in nanotube-reinforced polymer composites — I: Modulus predictions using effective nanotube properties. DOI: 10.1016/S0266-3538(03)00069-1

  14. Liu, Y., Nishimura, N., and Otani, Y., Largescale modeling of carbon-nanotube composites by a fast multipole boundary element method. DOI: 10.1016/j.commatsci.2004.11.003

  15. Anumandla, V., and Gibson, R. F., A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotubereinforced composites. DOI: 10.1016/j.compositesa.2005.09.016

  16. Seidel, G. D., and Lagoudas, D. C., Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. DOI: 10.1016/j.mechmat.2005.06.029

  17. Sigmund, O., A new class of extremal composites. DOI: 10.1016/S0022-5096(99)00034-4

  18. Kouznetsova, V. G., Geers, M. G. D., and Brekelmans, W. A. M., Multi-scale secondorder computational homogenization of multiphase materials: A nested finite element solution strategy. DOI: 10.1016/j.cma.2003.12.073

  19. Feyel, F., and Chaboche, J. L., FE<sup>2</sup> multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. DOI: 10.1016/S0045-7825(99)00224-8

  20. Terada, K., and Kikuchi, N., A class of general algorithms for multi-scale analysis of heterogeneous media. DOI: 10.1016/S0045-7825(01)00179-7

  21. Ghosh, S., Lee, K., and Raghavan, P., A multi-level computational model for multiscale damage analysis in composite and porous materials. DOI: 10.1016/S0020-7683(00)00167-0

  22. Smit, R. J. M., Brekelmans, W. A. M., and Meijer, H. E. H., Prediction of the mechanical behaviour of non-linear heterogeneous systems by multi-level finite element modeling. DOI: 10.1016/S0045-7825(97)00139-4

  23. Miehe, C., Schroder, J., and Schotte, J., Computational homogenization analysis in finite plasticity: Simulation of texture development in polycrystalline materials. DOI: 10.1016/S0045-7825(98)00218-7

  24. Michel, J. C., Moulinec, H., and Suquet, P., Effective properties of composite materials with periodic microstructure: A computational approach. DOI: 10.1016/S0045-7825(98)00227-8

  25. Miehe, C., and Koch, A., Computational microto- macro transition of discretized microstructures undergoing small strain. DOI: 10.1007/s00419-002-0212-2

  26. Hill, R., Elastic properties of reinforced solids: Some theoretical principles. DOI: 10.1016/0022-5096(63)90036-X

  27. Hill, R., On macroscopic effects of heterogeneity in elastoplastic media at finite strain. DOI: 10.1017/S0305004100061818

  28. Nemat-Nasser, S., Averaging theorems in finite deformation plasticity. DOI: 10.1016/S0167-6636(98)00073-8

  29. Suquet, P. M., Local and global aspects in the mathematical theory of plasticity.

  30. Wan, H., Delale, F., and Shen, L., Effect of CNT length and CNT-matrix interphase in carbon nanotube (CNT) reinforced composites. DOI: 10.1016/j.mechrescom.2004.10.011


Articles with similar content:

A NEW MULTISCALE FINITE ELEMENT METHOD FOR MECHANICAL ANALYSIS OF PERIODIC HETEROGENEOUS COSSERAT MATERIALS
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 4
Hongwu Zhang, Zhaoqian Xie
Exact Relations for the Effective Properties of Nonlinearly Elastic Inhomogeneous Materials
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 1
B. Bary, Qi-Chang He
AN ATOMISTIC–CONTINUUM MULTISCALE METHOD FOR MODELING THE THERMOMECHANICAL BEHAVIOR OF HETEROGENEOUS NANOSTRUCTURES
International Journal for Multiscale Computational Engineering, Vol.16, 2018, issue 5
M. Jahanshahi, N. Jafarian, N. Heidarzadeh, Amir R. Khoei
Size of a Representative Volume Element in a Second-Order Computational Homogenization Framework
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Marc Geers, W. A. M. Brekelmans, Varvara G. Kouznetsova
PREDICTION, BY A GENETIC ALGORITHM, OF THE EFFECT OF HEAT STRESS ON THE TRANSVERSE DAMAGE OF FIBER−MATRIX INTERFACE OF HYBRID COMPOSITE MATERIAL (GLASS-CARBON/ EPOXY)
Composites: Mechanics, Computations, Applications: An International Journal, Vol.7, 2016, issue 1
N. Beldjoudi, L. Temimi, M. Morsli, A. Mokaddem, B. Doumi, A. Boutaous