Library Subscription: Guest
Home Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering

Impact factor: 0.768

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2011002651
pages 707-726

MODELING DYNAMIC FRACTURE AND DAMAGE IN A FIBER-REINFORCED COMPOSITE LAMINA WITH PERIDYNAMICS

Wenke Hu
Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0526, USA
Youn Doh Ha
Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0526, USA;Assistant Professor, Department of Naval Architecture, Kunsan National University, Korea
Florin Bobaru
Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0526, USA

ABSTRACT

We propose a peridynamic formulation for a unidirectional fiber-reinforced composite lamina based on homogenization and mapping between elastic and fracture parameters of the micro-scale peridynamic bonds and the macro-scale parameters of the composite. The model is then used to analyze the splitting mode (mode II) fracture in dynamic loading of a 0 lamina. Appropriate scaling factors are used in the model in order to have the elastic strain energy, for a fixed nonlocal interaction distance (the peridynamic horizon), match the classical one. No special criteria for splitting failure are required to capture this fracture mode in the lamina. Convergence studies under uniform grid refinement for a fixed horizon size (m-convergence) and under decreasing the peridynamic horizon (δ-convergence) are performed. The computational results show that the splitting fracture mode obtained with peridynamics compares well with experimental observations. Moreover, in the limit of the horizon going to zero, the maximum crack propagation speed computed with peridynamics approaches the value obtained from an analytical classical formulation for the steady-state dynamic interface debonding found in the literature.

REFERENCES

  1. Bobaru, F., Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: A peridynamic approach. DOI: 10.1088/0965-0393/15/5/002

  2. Bobaru, F. and Ha, Y. D., Adaptive refinement and multiscale modeling in 2D peridynamics. DOI: 10.1615/IntJMultCompEng.2011002793

  3. Bobaru, F., Yang, M., Alves, L. F., Silling, S. A., Askari, E., and Xu, J., Convergence, adaptive refinement, and scaling in 1D peridynamics. DOI: 10.1002/nme.2439

  4. Bogert, P. B., Satyanarayana, A., and Chunchu, P. B., Comparison of damage path predictions for composite laminates by explicit and standard finite element analysis tool. DOI: 10.2514/6.2006-1750

  5. Cristescu, N. D., Craciun, E. M., and Soos, E., Mechanics of Elastic Composite. DOI: 10.1201/9780203502815

  6. Eskandari, E. and Nemes, J. A., Dynamic testing of composite laminates with a tensile split hopkinson bar. DOI: 10.1177/002199830003400401

  7. Ha, Y. D. and Bobaru, F., Traction boundary conditions in peridynamics: A convergence study.

  8. Ha, Y. D., and Bobaru, F., Studies of dynamic crack propagation and crack branching with peridynamics. DOI: 10.1007/s10704-010-9442-4

  9. Ha, Y. D. and Bobaru, F., Characteristics of dynamic brittle fracture captured with peridynamics. DOI: 10.1016/j.engfracmech.2010.11.020

  10. Ha, Y .D. and Bobaru, F., Dynamic brittle fracture captured with peridynamics.

  11. Ha, Y. D., Hu, W., and Bobaru, F., The skin effect and numerical integration in peridynamics.

  12. Hallett, S. R., Green, B. G., Jiang, W. G., and Wisnom, M. R., An experimental and numerical investigation into the damage mechanisms in notched composites. DOI: 10.1016/j.compositesa.2009.02.021

  13. Halpin, J. C. and Kardos, J. L., The Halpin—Tsai equations: A review. DOI: 10.1002/pen.760160512

  14. Hu, W., Ha, Y. D., and Bobaru, F., Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites. DOI: 10.1016/j.cma.2012.01.016

  15. Jiang, W. G., Hallett, S. R., Green, B. G., and Wisnom, M. R., A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. DOI: 10.1002/nme.1842

  16. Jose, S., Kumar, R. R., Jana, M. K., and Rao, G. V., Intralaminar fracture toughness of a cross-ply laminate and its constituent sub-laminates. DOI: 10.1016/S0266-3538(01)00011-2

  17. Kazemahvazi, S., Zenkert, D., and Burman, M., Notch and strain rate sensitivity of non-crimp fabric composites. DOI: 10.1016/j.compscitech.2008.06.002

  18. Kortschot, M. T. and Beaumont, P. W. R., Damage mechanics of composite materials. I: Measurements of damage and strength. DOI: 10.1016/0266-3538(90)90077-I

  19. Kortschot, M. T. and Beaumont, P.W. R., Damage mechanics of composite materials. II: A damaged-based notched strength model. DOI: 10.1016/0266-3538(90)90078-J

  20. Kilic, B., Agwai, A., and Madenci, E., Peridynamic theory for progressive damage prediction in center-cracked composite laminates. DOI: 10.1016/j.compstruct.2009.02.015

  21. Lee, D., Tippur, H., Kirugulige, M., and Bogert, P., Experimental study of dynamic crack growth in unidirectional graphite/epoxy composites using digital image correlation method and high-speed photography. DOI: 10.1177/0021998309342139

  22. Pineda, E. J., Waas, A. M., Bednarcyk, B. A., Collier, C. S., and Yarrington, P. W., Progressive damage and failure modeling in notched laminated fiber reinforced composites. DOI: 10.1007/s10704-009-9370-3

  23. Ravi, S., Iyengar, N. G. R., Kishore, N. N., and Shukla, A., Experimental studies on damage growth in composite under dynamic loads. DOI: 10.1023/A:1011269031799

  24. Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces. DOI: 10.1016/S0022-5096(99)00029-0

  25. Silling, S. A. and Askari, E., A meshfree method based on the peridynamic model of solid mechanics. DOI: 10.1016/j.compstruc.2004.11.026

  26. Silling, S. A. and Bobaru, F., Peridynamic modeling of membranes and fibers. DOI: 10.1016/j.ijnonlinmec.2004.08.004

  27. Silling, S. A., Zimmermann, M., and Abeyaratne, R., Deformation of a peridynamic bar. DOI: 10.1023/B:ELAS.0000029931.03844.4f

  28. Silling, S. A., Epton, M., Weckner, O., Xu, J., and Askari, E., Peridynamic states and constitutive modeling. DOI: 10.1007/s10659-007-9125-1

  29. Tsai, J. L., Guo, C., and Sun, C. T., Dynamic delamination fracture toughness in unidirectional polymeric composites. DOI: 10.1016/S0266-3538(00)00197-4

  30. Wu, E. M., Fracture mechanics of anisotropic plates.

  31. Xu, J., Askari, E., Weckner, O., Razi, H., and Silling, S. A., Damage and failure analysis of composite laminates under biaxial loads. DOI: 10.2514/6.2007-2315

  32. Xu, J., Askari, E.,Weckner, O., and Silling, S. A., Peridynamic analysis of impact damage in composite laminates. DOI: 10.1061/(ASCE)0893-1321(2008)21:3(187)

  33. Yang, W., Suo, Z., and Shih, C. F., Mechanics of dynamic debonding. DOI: 10.1098/rspa.1991.0070