Library Subscription: Guest
Home Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering

Impact factor: 0.760

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2011002793
pages 635-660


Florin Bobaru
Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0526, USA
Youn Doh Ha
Department of Naval Architecture, Kunsan National University, 558 Daehak-ro (San 68, Miryong-dong) Gunsan, Jeonbuk, 573-701, Korea


The original peridynamics formulation uses a constant nonlocal region, the horizon, over the entire domain. We propose here adaptive refinement algorithms for the bond-based peridynamic model for solving statics problems in two dimensions that involve a variable horizon size. Adaptive refinement is an essential ingredient in concurrent multiscale modeling, and in peridynamics changing the horizon is directly related to multiscale modeling. We do not use any special conditions for the "coupling" of the large and small horizon regions, in contrast with other multiscale coupling methods like atomistic-to-continuum coupling, which require special conditions at the interface to eliminate ghost forces in equilibrium problems. We formulate, and implement in two dimensions, the peridynamic theory with a variable horizon size and we show convergence results (to the solutions of problems solved via the classical partial differential equations theories of solid mechanics in the limit of the horizon going to zero) for a number of test cases. Our refinement is triggered by the value of the nonlocal strain energy density. We apply the boundary conditions in a manner similar to the way these conditions are enforced in, for example, the finite-element method, only on the nodes on the boundary. This, in addition to the peridynamic material being effectively "softer" near the boundary (the so-called "skin effect") leads to strain energy concentration zones on the loaded boundaries. Because of this, refinement is also triggered around the loaded boundaries, in contrast to what happens in, for example, adaptive finite-element methods.


  1. Abu Al-Rub, R. K. and Voyiadjis, G. Z., Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro- and nano-indentation experiments. DOI: 10.1016/j.ijplas.2003.10.007

  2. Arrea, M. and Ingraffea, A. R., Mixed-mode crack propagation in mortar and concrete.

  3. Askari, E., Bobaru, F., Lehoucq, R. B., Parks, M. L., Silling, S. A., and Weckner, O., Peridynamics for multiscale materials modeling. DOI: 10.1088/1742-6596/125/1/012078

  4. Babuska, I. and Rheinboldt, W. C., A posteriori error estimates for the finite element method. DOI: 10.1002/nme.1620121010

  5. Bazant, Z. P., Can multiscale-multiphysics methods predict softening damage and structural failure?. DOI: 10.1615/IntJMultCompEng.v8.i1.50

  6. Bazant, Z. P. and Jirasek, M., Nonlocal integral formulations of plasticity and damage: Survey of progress. DOI: 10.1061/(ASCE)0733-9399(2002)128:11(1119)

  7. Becker, R., Johnson, C., and Rannacher, R., Adaptive error control for multigrid finite element methods. DOI: 10.1007/BF02238483

  8. Belytschko, T. and Xiao, S. P., Coupling methods for continuum model with molecular model. DOI: 10.1615/IntJMultCompEng.v1.i1.100

  9. Bobaru, F., Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofiber networks: a peridynamic approach. DOI: 10.1088/0965-0393/15/5/002

  10. Bobaru, F. and Duangpanya, M., The peridynamic formulation for transient heat conduction. DOI: 10.1016/j.ijheatmasstransfer.2010.05.024

  11. Bobaru, F., Yang, M., Alves, L. F., Silling, S. A., Askari, E., and Xu, J., Convergence, adaptive refinement, and scaling in 1D peridynamics. DOI: 10.1002/nme.2439

  12. Chamoin, L., Prudhomme, S., Ben Dhia, H., and Oden, T., Ghost forces and spurious effects in atomic-to-continuum coupling methods by the Arlequin approach. DOI: 10.1002/nme.2879

  13. Dayal, K. and Bhattacharya, K., The kinetics of phase boundaries in the peridynamic formulation of continuum mechanics.

  14. De Zeeuw, D. and Powell, K. G., An adaptively refined Cartesian mesh solver for the Euler equations. DOI: 10.1006/jcph.1993.1007

  15. Emmrich, E. and Weckner, O., On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity.

  16. Eringen, A. C., Theory of nonlocal elasticity and some applications.

  17. Greaves, D. M. and Brothwick, A. G. L., Hierarchical tree-based finite element mesh generation.

  18. Ha, Y. D. and Bobaru, F., Studies of dynamic crack propagation and crack branching with peridynamics. DOI: 10.1007/s10704-010-9442-4

  19. Ha, Y. D. and Bobaru, F., Characteristics of dynamic brittle fracture captured with peridynamics. DOI: 10.1016/j.engfracmech.2010.11.020

  20. Hu,W., Ha, Y. D., and Bobaru, F., Numerical integration in peridynamics.

  21. Hu, W., Ha, Y. D., and Bobaru, F., Modeling dynamic fracture and damage in fiber-reinforced composites with peridynamics. DOI: 10.1615/IntJMultCompEng.2011002651

  22. Hunter, G. M. and Steiglitz, K., Operations on images using quadtree.

  23. Kunin, I. A., Elastic Media with Microstructure. I: One-Dimensional Models.

  24. Lu, H. and Chen, J. S., Adaptive meshfree particle method.

  25. Miller, R. E. and Tadmor, E. B., The quasicontinuum method: Overview, applications and current directions. DOI: 10.1023/A:1026098010127

  26. Parks, M. L., Lehoucq, R. B., Plimpton, S. J., and Silling, S. A., Implementing peridynamics within a molecular dynamics code. DOI: 10.1016/j.cpc.2008.06.011

  27. Patzak, B., and Jirasek, M., Adaptive resolution of localized damage in quasi-brittle materials. DOI: 10.1061/(ASCE)0733-9399(2004)130:6(720)

  28. Rodriguez-Ferran, A. and Huerta, A., Error estimation and adaptivity for nonlocal damage models. DOI: 10.1016/S0020-7683(00)00209-2

  29. Rodriguez-Ferran, A., Morata, I., and Huerta, A., Efficient and reliable nonlocal damage models. DOI: 10.1016/j.cma.2003.11.015

  30. Rogula, D., Nonlocal Theory of Material Media.

  31. Samet, H., Neighbor finding techniques for images represented by quadtrees. DOI: 10.1016/0146-664X(82)90098-3

  32. Samet, H. and Webber, R. E., Hierarchical data structures and algorithms for computer graphics, I. Fundamentals. DOI: 10.1109/38.513

  33. Samet, H. and Webber, R. E., Hierarchical data structures and algorithms for computer graphics, II. Applications. DOI: 10.1109/38.7750

  34. Shenoy, V. B., Miller, R., Tadmor, E. B., Rodney, D., Phillips, R., and Ortiz, M., An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method. DOI: 10.1016/S0022-5096(98)00051-9

  35. Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces. DOI: 10.1016/S0022-5096(99)00029-0

  36. Silling, S. A., Homogenization and scaling of peridynamic material models.

  37. Silling, S. A. and Askari, E., A meshfree method based on the peridynamic model of solid mechanics. DOI: 10.1016/j.compstruc.2004.11.026

  38. Silling, S. A. and Bobaru, F., Peridynamic modeling of membranes and fibers. DOI: 10.1016/j.ijnonlinmec.2004.08.004

  39. Silling, S. A. and Lehoucq, R. B., Convergence of peridynamics to classical elasticity theory. DOI: 10.1007/s10659-008-9163-3

  40. Silling, S. A., Zimmermann, M., and Abeyaratne, R., Deformation of a peridynamic bar. DOI: 10.1023/B:ELAS.0000029931.03844.4f

  41. Silling, S. A., Epton, M., Weckner, O., Xu, J., and Askari, E., Peridynamic states and constitutive modeling. DOI: 10.1007/s10659-007-9125-1

  42. Tabarraei, A. and Sukumar, N., Adaptive computations on conforming quadtree meshes. DOI: 10.1016/j.finel.2004.08.002

  43. Tadmor, E. B., Ortiz, M., and Phillips, R., Quasicontinuum analysis of defects in solids. DOI: 10.1080/01418619608243000

  44. van Dommelen, L. and Rundensteiner, E. A., Adaptive summation of point forces in the two-dimensional Poisson equation. DOI: 10.1016/0021-9991(89)90225-8

  45. Voyiadjis, G. Z. and Abu Al-Rub, R. K., Gradient plasticity theory with a variable length scale parameter. DOI: 10.1016/j.ijsolstr.2004.12.010

  46. Xie, W., Peridynamic flux-corrected transport algorithm for shock wave studies.

  47. Xu, J., Askari, E.,Weckner, O., and Silling, S. A., Peridynamic analysis of impact damage in composite laminates. DOI: 10.1061/(ASCE)0893-1321(2008)21:3(187)

  48. Yao, H. and Gao, H., Multi-scale cohesive laws in hierarchical materials. DOI: 10.1016/j.ijsolstr.2007.06.007

  49. Yerry, M. and Shephard, M., A modified-quadtree approach to finite element mesh generation. DOI: 10.1109/MCG.1983.262997

  50. Zienkiewicz, O. C. and Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis. DOI: 10.1002/nme.1620240206