Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.2011002402
pages 661-674


Nathanial Burch
Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523, USA
Richard Lehoucq
Sandia National Labs


The purpose of this paper is to compare the solutions of one-dimensional boundary value problems corresponding to classical, fractional, and nonlocal diffusion on bounded domains. The latter two diffusions are viable alternatives for anomalous diffusion when Fick's first law is an inaccurate model. In the case of nonlocal diffusion, a generalization of Fick's first law in terms of a nonlocal flux is demonstrated to hold. A relationship between nonlocal and fractional diffusion is also reviewed, where the order of the fractional Laplacian can lie in the interval (0, 2]. The contribution of this paper is to present boundary value problems for nonlocal diffusion including a variational formulation that leads to a conforming finite-element method using piecewise discontinuous shape functions. The nonlocal Dirichlet and Neumann boundary conditions used represent generalizations of the classical boundary conditions. Several examples are given where the effect of nonlocality is studied. The relationship between nonlocal and fractional diffusion explains that the numerical solution of boundary value problems, where the order of the fractional Laplacian can lie in the interval (0, 2], is possible.


  1. Andreu, F., Mazon, J., Rossi, J., and Toledo, J., A nonlocal p-Laplacian evolution equation with Neumann boundary conditions. DOI: 10.1016/j.matpur.2008.04.003

  2. Andreu, F., Mazon, J. M., Rossi, J. D., and Toledo, J., A nonlocal p-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions. DOI: 10.1137/080720991

  3. Applebaum, D., Lévy Processes and Stochastic Calculus. DOI: 10.1017/CBO9780511755323

  4. Aranovich, G. and Donohue, M., Diffusion in fluids with large mean free paths: Non-classical behavior between Knudsen and Fickian limits. DOI: 10.1016/j.physa.2009.05.012

  5. Bhowmik, S., Stability and convergence analysis of a one step approximation of a linear partial integro-differential equation. DOI: 10.1002/num.20576

  6. Bobaru, F. and Duangpanya, M., The peridynamic formulation for transient heat conduction. DOI: 10.1016/j.ijheatmasstransfer.2010.05.024

  7. Chasseigne, E., Chaves, M., and Rossi, J., Asymptotic behavior for nonlocal diffusion equations. DOI: 10.1016/j.matpur.2006.04.005

  8. Ervin, V. J. and Roop, J. P., Variational formulation for the stationary fractional advection dispersion equation. DOI: 10.1002/num.20112

  9. Gunzburger, M. and Lehoucq, R. B., A nonlocal vector calculus with application to nonlocal boundary value problems. DOI: 10.1137/090766607

  10. Ignat, L. I. and Rossi, J. D., Decay estimates for nonlocal problems via energy methods. DOI: 10.1016/j.matpur.2009.04.009

  11. Lehoucq, R. B. and von Lilienfeld, O. A., Translation of Walter Noll's ''Derivation of the fundamental equations of continuum thermodynamics from statistical mechanics''. DOI: 10.1007/s10659-010-9246-9

  12. Meerschaert, M., Mortensen, J., and Wheatcraft, S., Fractional vector calculus for fractional advection-dispersion. DOI: 10.1016/j.physa.2005.11.015

  13. Neuman, S. P. and Tartakovsky, D. M., Perspective on theories of non-Fickian transport in heterogeneous media. DOI: 10.1016/j.advwatres.2008.08.005

  14. Noll, W., Die herleitung der grundgleichungen der thermomechanik der kontinua aus der statistischen mechanik. DOI: 10.1512/iumj.1955.4.54022

  15. Paradisi, P., Cesari, R., Mainardi, F.,Maurizi, A., and Tampieri, F., A generalized Fick's law to describe non-local transport effects. DOI: 10.1016/S1464-1909(01)00006-5

  16. Pérez-Llanos, M. and Rossi, J., Numerical approximations for a nonlocal evolution equation. DOI: 10.1137/110823559

  17. Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y., and Jara, B. M. V., Matrix approach to discrete fractional calculus II: Partial fractional differential equations. DOI: 10.1016/

  18. Schumer, R., Benson, D. A., Meerschaert, M. M., and Baeumer, B., Multiscaling fractional advection-dispersion equations and their solutions. DOI: 10.1029/2001WR001229