Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v6.i5.50
pages 451-468

A Multiscale Approach to Nonlinearity in Piezoelectric-Ferroelectric Smart Structures: From Micromechanics to Engineering

Uri Kushnir
Faculty of Civil and Environmental Engineering, Technion, Israel Institute of Technology, Technion City, Haifa, 32000, Israel
Oded Rabinovitch
Faculty of Civil and Environmental Engineering, Technion, Israel Institute of Technology, Technion City, Haifa, 32000, Israel

ABSTRACT

A multiscale approach to the nonlinear electromechanical analysis of piezoelectric and ferroelectric structural elements is presented. The multiscale modeling ranges from the unit cell scale, in which the phenomena of domain switching originate, and goes through the grain scale, the material point scale, the continuum scale, and up to the structural element scale. A multiscale approach for the numerical solution of the governing equations of the nonlinear structural model is also presented. This approach accounts for the loading history dependency and the nonlinearity of the ferroelectric behavior by implementing an incremental iterative procedure and separate discretizations for the grain, the material point, and the structure scales. A numerical example of a ferroelectric beam under combined bending, compression, and electrical loading demonstrates the various multiscale aspects of the model and, particularly, the influence of the domain switching on the response at the different physical and mathematical scales. The findings of the article designate the multiscale approach as a meaningful step toward the implementation of ferroelectric materials in advanced smart structures with enhanced capabilities.


Articles with similar content:

Nonlinear viscoelastic analysis of statistically homogeneous random composites
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
Michal Sejnoha, R. Valenta, Jan Zeman
NUMERICAL SIMULATION OF DETONATIONS: FUNDAMENTALS AND APPLICATION
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
Elaine S. Oran
MULTISCALE MODEL FOR DAMAGE-FLUID FLOW IN FRACTURED POROUS MEDIA
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 4
Mahdad Eghbalian, Richard Wan
A MULTISCALE APPROACH FOR THERMO-MECHANICAL SIMULATIONS OF LOADING COURSES IN CAST IRON BRAKE DISCS
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 1
Stefan Schmid, Daniel Schneider, Michael Selzer, Christoph Herrmann, Britta Nestler
INTERACTIONS BETWEEN MULTIPLE ENRICHMENTS IN EXTENDED FINITE ELEMENT ANALYSIS OF SHORT FIBER REINFORCED COMPOSITES
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 6
Mason A. Hickman, Matthew G. Pike, Caglar Oskay