Library Subscription: Guest
International Journal for Multiscale Computational Engineering

Published 6 issues per year

ISSN Print: 1543-1649

ISSN Online: 1940-4352

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.4 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.3 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 2.2 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00034 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.46 SJR: 0.333 SNIP: 0.606 CiteScore™:: 3.1 H-Index: 31

Indexed in

Macroscopic Constitutive Law for Mastic Asphalt Mixtures from Multiscale Modeling

Volume 8, Issue 1, 2010, pp. 131-149
DOI: 10.1615/IntJMultCompEng.v8.i1.100
Get accessGet access

ABSTRACT

A well-established framework of an uncoupled hierarchical modeling approach is adopted here for the prediction of macroscopic material parameters of the generalized Leonov constitutive model intended for the analysis of flexible pavements at both moderate and elevated temperature regimes. To that end, a recently introduced concept of a statistically equivalent periodic unit cell is addressed to reflect a real microstructure of mastic asphalt mixtures (MAm). Although mastic properties are derived from an extensive experimental program, the macroscopic properties of MAm are fitted to virtual numerical experiments performed on the basis of first-order homogenization scheme. To enhance feasibility of the solution of the underlying nonlinear problem, a two-step homogenization procedure is proposed. Here, the effective material properties are first found for a mortar phase, a composite consisting of a mastic matrix and a fraction of small aggregates. These properties are then introduced in place of the matrix in actual unit cells to give estimates of the model parameters on macroscale. Comparison to the Mori-Tanaka predictions is also provided suggesting limitations of classical micromechanical models.

REFERENCES
  1. Abbas, A. R., Papagiannakis, A. T., and Masad, E. A., Linear and nonlinear viscoelastic analysis of the microstructure of asphalt concretes. DOI: 10.1061/(ASCE)0899-1561(2004)16:2(133)

  2. Aiger, E. G., Pichler, C., and Lackner, R., Bottom-up multiscale modeling of viscoelastic properties of asphalt.

  3. Benveniste, Y., A new approach to the application of mori-tanaka theory in composite materials. DOI: 10.1016/0167-6636(87)90005-6

  4. Beran, M. J., Statistical Continuum Theories. DOI: 10.1119/1.1974326

  5. Bittnar, Z. and Šejnoha, J., Numer. Methods Struct. Eng.

  6. Chaboche, J. L., Kruch, S., Maire, J. F., and Pottier, T., Towards a micromechanics based inelastic and damage modeling of composites. DOI: 10.1016/S0749-6419(00)00056-5

  7. Dai, Q., Saad, M. H., and You, Z., A micromechanical finite element model for linear and damage-coupled viscoelastic behaviour of asphalt mixture. DOI: 10.1002/nag.520

  8. Dvorak, G. J., Transformation field analysis of inelastic composite materials.

  9. Dvorak, G. J., Bahei-El-Din, Y. A., and Wafa, A. M., Implementation of the transformation field analysis for inelastic composite-materials. DOI: 10.1007/BF00370073

  10. Dvorak, G. J. and Benveniste, Y., On transformation strains and uniform fields in multiphase elastic media. DOI: 10.1098/rspa.1992.0062

  11. Fang, H., Haddock, J. E., White, T. D., and Hand, A. J., On the characterization of flexible pavement rutting using creep model-based finite element analysis. DOI: 10.1016/j.finel.2004.03.002

  12. Fish, J. and Shek, K., Multiscale analysis of large-scale nonlinear structures and materials.

  13. Hashin, Z. and Shtrikman, S., On some variational principles in anisotropic and nonhomogeneous elasticity. DOI: 10.1016/0022-5096(62)90004-2

  14. Hill, R., Elastic properties of reinforced solids-some theoretical principles. DOI: 10.1016/0022-5096(63)90036-X

  15. Huang, B., Mohammad, L. N., and Wathugala, W., Application of temperature dependent viscoplastic hierarchical single surface model for asphalt mixtures. DOI: 10.1061/(ASCE)0899-1561(2004)16:2(147)

  16. Ibrahimbegović, A., Knopf-Lenoir, C., Kučerová, A., and Villon, P., Optimal design and optimal control of structures undergoing finite rotations and elastic deformations. DOI: 10.1002/nme.1150

  17. Kouznetsova, V., Geers, M. G. D., and Brekelmans, W. A. M., Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. DOI: 10.1002/nme.541

  18. Kučerová, A., Identification of nonlinear mechanical model parameters based on softcomputing methods.

  19. Kučerová, A., Lepš, M., and Zeman, J., Back analysis of microplane model parameters using soft computing methods.

  20. Lackner, R., Blab, R., Eberhardsteiner, J., and Mang, H., Characterization and multiscale modeling of asphalt-recent developments in upscaling of viscous and strength properties. DOI: 10.1007/1-4020-5370-3_26

  21. Lackner, R., Blab, R., Jager, A., Spiegl, M., Kappl, K., Wistuba, M., Gagliano, B., and Eberhardsteiner, J., Multiscale modeling as the basis for reliable predictions of the behaviour of multi-composed materials. DOI: 10.4203/csets.12.8

  22. Lackner, R., Spiegl, M., Blab, R., and Eberhardsteiner, J., Is low-temperature creep of asphalt mastic independent of filler shape and mineralogy? - Arguments from multiscale analysis. DOI: 10.1061/(ASCE)0899-1561(2005)17:5(485)

  23. Leonov, A. I., Non-equilibrium thermodynamics and rheology of viscoelastic polymer media.

  24. Masad, E., Tashman, L., Little, D., and Zbib, H., Viscoplastic modelling of asphalt mixes with effects of anisotropy. DOI: 10.1016/j.mechmat.2005.06.003

  25. Matouš, K., Lepš, M., Zeman, J., and Šejnoha, M., Applying genetic algorithms to selected topics commonly encountered in engineering practice. DOI: 10.1016/S0045-7825(00)00192-4

  26. Michel, J. C., Moulinec, H., and Suquet, P., Effective properties of composite materials with periodic microstructure: A computational approach. DOI: 10.1016/S0045-7825(98)00227-8

  27. Mori, T. and Tanaka, K., Average stress in matrix and average elastic energy of elastic materials with misfitting inclusions. DOI: 10.1016/0001-6160(73)90064-3

  28. Moulinec, H. and Suquet, P., Micromechanics of materials: from numerical simulations to predictive models.

  29. Mura, T., Micromechanics of Defects in Solids. DOI: 10.1115/1.3176116

  30. Panoskaltsis, V. P. and Panneerselvam, D., An anisotropic hyperelastic-viscoplastic damage model for asphalt concrete materials and its numerical implementation.

  31. Papagiannakis, A. T., Abbas, A. R., and Masad, E. A., Microemchanical analysis of viscoelastic properties using image analysis.

  32. Read, J. and Whiteoak, D., The Shell Bitumen Handbook. DOI: 10.1680/sbh.32200

  33. Sousa, J. B., and Weissman, S. L., Modeling permanent deformation of asphalt concrete mixtures.

  34. Sousa, J. B., Weissman, S. L., Sackman, J., and Monismith, C. L., Nonlinear elastic viscous with damage model to predict permanent deformation of asphalt concrete mixes.

  35. Tervoort, T. A., Constitutive Modeling of Polymer Glasses: Finite.

  36. Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties. DOI: 10.1115/1.1483342

  37. Šejnoha, J., Šejnoha, M., Zeman, J., Sýkora, J., and Vorel, J., Mesoscopic study on historic masonry.

  38. Šejnoha, M. and Valenta, R., Epoxy resin as a bonding agent in polymer matrix composites: material properties and numerical implementation.

  39. Šejnoha, M., Valenta, R., and Zeman, J., Nonlinear viscoelastic analysis of statistically homogeneous random composites. DOI: 10.1615/IntJMultCompEng.v2.i4.80

  40. Šejnoha, M. and Zeman, J., Overall viscoelastic response of random fibrous composites with statistically quasi uniform distribution of reinforcements. DOI: 10.1016/S0045-7825(02)00433-4

  41. Weissman, S. L., Sackman, J. L., Harvey, J. T., and Guada, I., A Constitutive law for asphalt concrete mixes formulated within the realm of large strains.

  42. Willis, J. R., Bounds and self-consistent estimates for the overall properties of anisotropic composites. DOI: 10.1016/0022-5096(77)90022-9

  43. You, Z., Adhikari, S., and Kutay, M. E., Dynamic modulus simulation of the asphalt concrete using the X-ray computed tomography images. DOI: 10.1617/s11527-008-9408-4

  44. Zeman, J. and Šejnoha, M., Numerical evaluation of effective properties of graphite fiber tow impregnated by polymer matrix. DOI: 10.1016/S0022-5096(00)00027-2

  45. Zeman, J. and Šejnoha, M., From random microstructures to representative volume elements. DOI: 10.1088/0965-0393/15/4/S01

CITED BY
  1. Underwood B. Shane, Kim Y. Richard, Experimental investigation into the multiscale behaviour of asphalt concrete, International Journal of Pavement Engineering, 12, 4, 2011. Crossref

  2. Sýkora Jan, Krejčí Tomáš, Kruis Jaroslav, Šejnoha Michal, Computational homogenization of non-stationary transport processes in masonry structures, Journal of Computational and Applied Mathematics, 236, 18, 2012. Crossref

  3. Underwood B. Shane, Kim Y. Richard, Microstructural investigation of asphalt concrete for performing multiscale experimental studies, International Journal of Pavement Engineering, 14, 5, 2013. Crossref

  4. Ghauch Z.G., Abou-Jaoude G.G., Strain response of hot-mix asphalt overlays in jointed plain concrete pavements due to reflective cracking, Computers & Structures, 124, 2013. Crossref

  5. Allen David H., Little Dallas N., Soares Roberto F., Berthelot Curtis, Multi-scale computational model for design of flexible pavement – part I: expanding multi-scaling, International Journal of Pavement Engineering, 18, 4, 2017. Crossref

  6. Arshadi Amir, Bahia Hussain, Development of an image-based multi-scale finite-element approach to predict mechanical response of asphalt mixtures, Road Materials and Pavement Design, 16, sup2, 2015. Crossref

  7. Allen David H., Little Dallas N., Soares Roberto F., Berthelot Curtis, Multi-scale computational model for design of flexible pavement – part II: contracting multi-scaling, International Journal of Pavement Engineering, 18, 4, 2017. Crossref

  8. Allen David H., Little Dallas N., Soares Roberto F., Berthelot Curtis, Multi-scale computational model for design of flexible pavement – part III: two-way coupled multi-scaling, International Journal of Pavement Engineering, 18, 4, 2017. Crossref

  9. Fu Jun, Yang Yanqing, Zhang Xiaoqiang, Wang Fazhou, Different strain distributions of cement-emulsified asphalt concrete pavement between the macro- and meso-scale, Road Materials and Pavement Design, 19, 2, 2018. Crossref

  10. Ling Cheng, Bahia Hussain, Modelling of aggregates’ contact mechanics to study roles of binders and aggregates in asphalt mixtures rutting, Road Materials and Pavement Design, 21, 3, 2020. Crossref

  11. Silva Luís C., Lourenço Paulo B., Milani Gabriele, Derivation of the out-of-plane behaviour of masonry through homogenization strategies: Micro-scale level, Computers & Structures, 209, 2018. Crossref

  12. Zhang Yao, Ma Tao, Luo Xue, Huang Xiaoming, Lytton Robert L., Prediction of dynamic shear modulus of fine aggregate matrix using discrete element method and modified Hirsch model, Mechanics of Materials, 138, 2019. Crossref

  13. Tiberti Simone, Milani Gabriele, 3D voxel homogenized limit analysis of single-leaf non-periodic masonry, Computers & Structures, 229, 2020. Crossref

  14. Jiang Jiwang, Ni Fujian, Gu Xingyu, Yao Linyi, Dong Qiao, Evaluation of aggregate packing based on thickness distribution of asphalt binder, mastic and mortar within asphalt mixtures using multiscale methods, Construction and Building Materials, 222, 2019. Crossref

  15. Behnke R., Canon Falla G., Leischner S., Händel T., Wellner F., Kaliske M., A continuum mechanical model for asphalt based on the particle size distribution: Numerical formulation for large deformations and experimental validation, Mechanics of Materials, 153, 2021. Crossref

  16. Rueda Eduardo J., Bastida Juan G., Jaramillo Jhonathan, Analysis of the Evolution of the Dynamic Shear Modulus through the Different Levels of an Asphalt Material, 2021 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), 2021. Crossref

  17. Underwood B. Shane, Kim Y. Richard, Effect of volumetric factors on the mechanical behavior of asphalt fine aggregate matrix and the relationship to asphalt mixture properties, Construction and Building Materials, 49, 2013. Crossref

  18. Sánchez Diana B., Airey Gordon, Caro Silvia, Grenfell James, Environmental effects on the rheological properties of fine warm RAP-foamed bitumen mixtures using SATS conditioning protocol, International Journal of Pavement Engineering, 22, 10, 2021. Crossref

  19. Behbahani Hamid, Salehfard Reza, A Review of Studies on Asphalt Fine Aggregate Matrix, Arabian Journal for Science and Engineering, 46, 11, 2021. Crossref

  20. Kučerová Anna, Sýkora Jan, Uncertainty updating in the description of coupled heat and moisture transport in heterogeneous materials, Applied Mathematics and Computation, 219, 13, 2013. Crossref

  21. Li Jian, Ni Fujian, Lu Qingqing, Experimental Investigation into the Multiscale Performance of Asphalt Mixtures with High Contents of Reclaimed Asphalt Pavement, Journal of Materials in Civil Engineering, 30, 6, 2018. Crossref

  22. Šejnoha Michal, Vorel Jan, Valentová Soňa, Tomková Blanka, Novotná Jana, Marseglia Guido, Computational Modeling of Polymer Matrix Based Textile Composites, Polymers, 14, 16, 2022. Crossref

Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections Prices and Subscription Policies Begell House Contact Us Language English 中文 Русский Português German French Spain