Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.554 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v8.i1.30
pages 17-36

Multiscale Simulation Methods in Damage Prediction of Brittle and Ductile Materials

Carsten Konke
Bauhaus-Universität Weimar, Institute of Structural Mechanics, Germany
Stefan Eckardt
Institute of Structural Mechanics, Bauhaus-Universitat, Weimar, Germany
Stefan Hafner
inuTech GmbH, Nurnberg, Germany
Torsten Luther
Institute of Structural Mechanics, Bauhaus University Weimar , Germany
Jorg Unger
Institute of Structural Mechanics, Bauhaus-Universitat, Weimar, Germany

ABSTRACT

The damage and fracture behavior of technical as well as biological materials in engineering structures is nowadays often described by continuum damage theories or linear and nonlinear fracture mechanics on the macroscale. A major drawback of these approaches is their inability to consider the inherent microstructure of materials that governs the damage and fracture behavior. Although classical material models on the macroscale have the advantage to be easily applicable in simulations of large-scale engineering structures, the experimental determination of necessary material parameters, especially for the description of material damage effects, is demanding and often a direct identification of these parameters from experiments is not possible at all. Furthermore, these continuum-based models are not capable of explicitly describing all physical material effects, such as decohesion between grain and matrix material and the resulting microcrack evolution in cementitious materials. At the meso- and microscales, the material microstructure and therewith also the material heterogeneity on finer scales is described explicitly. Even with today's computational power, it is not affordable to simulate whole large structures on the meso- or microscale, and a coupling between models on different spatial scales (e.g., meso- and macroscale) becomes necessary. The resulting integrated multiscale models can be applied for the simulation of large-scale constructional components and to obtain detailed information on local microdamage effects at the same time.

REFERENCES

  1. Backhoff, C., Bitmap-Bildanalyse zur Identifizierung der Kornstruktur von Beton aus digitalisierten Aufnahmen.

  2. Bazant, Z. P., Tabbara, M. R., Kazemi, M. T., and Pijaudier-Cabot, G., Random particle model for fracture of aggregate or fiber composites. DOI: 10.1061/(ASCE)0733-9399(1990)116:8(1686)

  3. Belsky, V., Beal, M. W., Fish, J., Shephard, M. S., and Gomaa, S., Computer-aided multiscale modeling tools for composite materials and structures. DOI: 10.1016/0956-0521(95)00019-V

  4. Chaboche, J. L., Continuum damage mechanics: Part I. General concepts. DOI: 10.1115/1.3173661

  5. D'Addetta, G. A., Discrete models for cohesive frictional materials, dissertation.

  6. D'Addetta, G. A., Kun, F., Ramm, E., and Herrmann, H. J., From solids to granulates-discrete element simulations of fracture and fragmentation processes in geomaterials. DOI: 10.1007/3-540-44424-6_17

  7. Dickson, L. E., Elementary theory of equations.

  8. Eckardt, S., Häfner, S., and Könke, C., Simulation of the fracture behaviour of concrete using continuum damage models at the mesoscale.

  9. Fayad, W., Thompson, C. V., and Frost, H. J., Steady-state grain-size distributions resulting from grain growth in two dimensions. DOI: 10.1016/S1359-6462(99)00034-2

  10. Fish, J. and Shek, K., Multiscale analysis of composite materials and structures. DOI: 10.1016/S0266-3538(00)00048-8

  11. Garboczi, E. J., Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: Application to aggregates used in concrete. DOI: 10.1016/S0008-8846(02)00836-0

  12. Geuzaine, C. and Remacle, J.-F., Gmsh Reference Manual.

  13. Guidoum, A. and Navi, P., Numerical simulation of thermomechanical behaviour of concrete through a 3d granular cohesive model.

  14. Häfner, S. and Könke, C., A multigrid finite element method for the mesoscale analysis of concrete.

  15. Häfner, S. and Könke, C., Multigrid preconditioned conjugate gradient method in the mechanical analysis of heterogeneous solids.

  16. Häfner, S., Eckardt, S., and Könke, C., A geometrical inclusion-matrix model for the finite element analysis of concrete at multiple scales.

  17. Häfner, S., Eckardt, S., Luther, T., and Könke, C., Mesoscale modeling of concrete, geometry and numerics. DOI: 10.1016/j.compstruc.2005.10.003

  18. Hashin, Z. and Shtrikman, S., Variational approach to the theory of the elastic behaviour of multiphase materials. DOI: 10.1016/0022-5096(63)90060-7

  19. Huet, C., An integrated approach of concrete micromechanics.

  20. Iesulauro, E., Coffman, V., and Sethna, J., Adaptive multiscale simulations.

  21. Iesulauro, E., Ingraffea, A. R., Arwade, S. R., and Wawrzynek, P. A., Simulation of grain boundary decohesion and crack propagation in aluminum microstructure models.

  22. Ingraffea, A. R., Iesulauro, E., Heber, G., Dodhia, K., and Wawrzynek, W., A multiscale modelling approach to crack initiation in aluminium polycrystals.

  23. Jirásek, M. and Zimmermann, T., Analysis of rotating crack model. DOI: 10.1061/(ASCE)0733-9399(1998)124:8(842)

  24. Kachanov, L. M., Introduction to Continuum Damage Mechanics. DOI: 10.1115/1.3173053

  25. Kessler-Kramer, C., Zugtragverhalten von Beton unter Ermüdungsbeanspruchung.

  26. Kirchner, S., Ausscheidungshartung dunner Al-0,6Si-0,6Ge-Schichten: Studie zur Ubertragbarkeit eines Massivmaterial-Legierungskonzeptes.

  27. Koensler, W., Sand und Kies, Ferdinand Enke.

  28. Könke, C., Eckardt, S., and Häfner, S., Spatial and temporal multiscale simulations of damage processes for concrete. DOI: 10.4203/csets.14.7

  29. Krajcinovic, D., Damage Mechanics.

  30. Kwan, A. K. H., Wang, Z. M., and Chan, H. C., Mesoscopic study of concrete, II: Nonlinear finite element analysis. DOI: 10.1016/S0045-7949(98)00178-3

  31. Leite, L. P. B., Slowik, V., and Mihashi, H., Computer simulation of fracture processes of concrete using mesolevel models of lattice structures. DOI: 10.1016/j.cemconres.2003.11.011

  32. Lemaitre, J., Course on Damage Mechanics.

  33. Li, G., Zhao, Y., and Pang, S. S., Four-phase sphere modeling of effective bulk modulus of concrete. DOI: 10.1016/S0008-8846(99)00040-X

  34. Li, G., Zhao, Y., Pang, S. S., and Li, Y., Effective young’s modulus estimation of concrete. DOI: 10.1016/S0008-8846(99)00119-2

  35. Luther, T. and Könke, C., Multiscale strategies for simulating brittle fracture in metallic materials.

  36. Luther, T. and Könke, C., Polycrystal models for the analysis of intergranular crack growth in metallic materials. DOI: 10.1016/j.engfracmech.2009.07.006

  37. McClintock, F. A., A criterion for ductile fracture by the growth of holes.

  38. Myers, C. R., Awarde, S. R., Iesulauro, E., Wawrzynek, W., Grigoriu, M., Ingraffea, A. R., Dawson, P. R., Miller, M. P., and Sethna, J., Digital material: A framework for multiscale modelling of defects in solids.

  39. Nagai, G., Yamada, T., and Wada, A., Three-dimensional nonlinear finite element analysis of the macroscopic compressive failure of concrete materials based on real digital image. DOI: 10.1061/40513(279)59

  40. Onck, P. and van der Giessen, E., Microstructurally-based modelling of intergranular creep fracture using grain elements. DOI: 10.1016/S0167-6636(97)00020-3

  41. Patzák, B. and Jirásek, M., Adaptive resolution of localized damage in quasibrittle materials.

  42. Paz, C. N. M., Martha, L. F., Alves, J. L. D., Ebecken, N. F. F., Fairbairn, E. M. R., and Coutinho, A. L. G. A., A computational approach of three-dimensional probabilistic discrete cracking in concrete.

  43. Prado, E. P. and van Mier, J. G. M., Effect of particle structure on mode i fracture process in concrete. DOI: 10.1016/S0013-7944(03)00125-5

  44. Raabe, D., Computational materials science: The simulation of materials.

  45. Rypl, D., Using the spherical harmonic analysis and the advancing front technique for the discretization of 3D aggregate particles. DOI: 10.1016/j.advengsoft.2008.12.002

  46. Schlangen, E., Experimental and numerical analysis of fracture processes in concrete.

  47. Schlangen, E. and van Mier, J. G. M., Simple lattice model for numerical simulation of fracture of concrete materials and structures. DOI: 10.1007/BF02472449

  48. Sejnoha, M. and Zeman, J., Micromechanical modeling of imperfect textile composites. DOI: 10.1016/j.ijengsci.2008.01.006

  49. Shakhmenko, G. and Birsh, J., Concrete mix design and optimization.

  50. Stock, A. F., Hannant, D. J., and Williams, R. I. T., The effect of aggregate concentration upon the strength and modulus of elasticity of concrete. DOI: 10.1680/macr.1979.31.109.225

  51. Thompson, C. V., Grain growth and evolution of other cellular structures.

  52. Tvergaard, V., Cohesive zone representations of failure between elastic or rigid solids and ductile solids. DOI: 10.1016/S0013-7944(03)00128-0

  53. Unger, J. and Könke, C., Simulation of concrete using the extended finite element method.

  54. Van Mier, J. G. M., and van Vliet, M. R. A., Influence of microstructure of concrete on size/scale effects in tensile fracture. DOI: 10.1016/S0013-7944(02)00222-9

  55. Van Mier, J. G. M., van Vliet, M. R. A., and Wang, T. K., Fracture mechanisms in particle composites: Statistical aspects in lattice type analysis. DOI: 10.1016/S0167-6636(02)00170-9

  56. Wang, Z. M., Kwan, A. K. H., and Chan, H. C., Mesoscopic study of concrete, I: Generation of random aggregate structure and finite element mesh. DOI: 10.1016/S0045-7949(98)00177-1

  57. Winkler, B., Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes für Beton.

  58. Wittmann, F. H., Sadouki, H., and Steiger, T., Experimental and numerical study of effective properties of composite materials.

  59. Wriggers, P. and Moftah, S. O., Mesoscale models for concrete: homogenisation and damage behaviour. DOI: 10.1016/j.finel.2005.11.008

  60. Zeman, J. and Sejnoha, M., Numerical evaluation of effective elastic properties of graphite fiber tow impregnated by polymer matrix. DOI: 10.1016/S0022-5096(00)00027-2

  61. Zohdi, T. I., Computational optimization of the vortex manufacturing of advanced materials. DOI: 10.1016/S0045-7825(01)00219-5


Articles with similar content:

Hypersurface for the Combined Loading Rate and Specimen Size Effects on Material Properties
International Journal for Multiscale Computational Engineering, Vol.3, 2005, issue 4
H. Eliot Fang, Yong Gan, Luming Shen, Zhen Chen
Computational Evaluation of Strain Gradient Elasticity Constants
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
N. A. Fleck, R. H. J. Peerlings
Nonlocal Elastic-Damage Interface Mechanical Model
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 2
Guido Borino, Francesco Parrinello, Boris Failla
MULTISCALE MODEL FOR DAMAGE-FLUID FLOW IN FRACTURED POROUS MEDIA
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 4
Mahdad Eghbalian, Richard Wan
MultiScale First-Order and Second-Order Computational Homogenization of Microstructures towards Continua
International Journal for Multiscale Computational Engineering, Vol.1, 2003, issue 4
Marc Geers, W. A. M. Brekelmans, Varvara G. Kouznetsova