Library Subscription: Guest
Home Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering

Impact factor: 0.768

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v2.i2.30
19 pages

Coarse-Grained Molecular Dynamics for Computer Modeling of Nanomechanical Systems

Robert E. Rudd
Lawrence Livermore National Laboratory, Condensed Matter Physics Div., L-045, Livermore, CA 94551

ABSTRACT

Unique challenges for computer modeling and simulation arise in the course of the development and design of nanoscale mechanical systems. Materials often exhibit unconventional behavior at the nanoscale that can affect device operation and failure. This uncertainty poses a problem because of the limited experimental characterization at these ultrasmall length scales. In this paper, we give an overview of how we have used concurrent multiscale modeling techniques to address some of these issues. Of particular interest are the dynamic and temperature-dependent processes found in nanomechanical systems. We focus on the behavior of submicron mechanical components of Micro-Electro-Mechanical Systems (MEMS) and Nano-Electro-Mechanical Systems (NEMS), especially flexural-mode resonators. The concurrent multiscale methodology we have developed for NEMS employs an atomistic description of millions of atoms in relatively small but key regions of the system, coupled to, and run concurrently with, a generalized finite element model of the periphery. We describe two such techniques. The more precise model, Coarse-Grained Molecular Dynamics (CGMD), describes the dynamics on a mesh of elements, but the equations of motion are built up from the underlying atomistic physics to ensure a smooth coupling between regions governed by different length scales. In many cases the degrees of smoothness of the coupling provided by CGMD is not necessary. The hybrid Coupling of Length Scales methodology, combining molecular dynamics with conventional finite element modeling, provides a suitable technique for these cases at a greatly reduced computation expense. We review these models and some of the results we have obtained regarding size effects in the elasticity and dissipation of nanomechanical systems.