Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
International Journal for Multiscale Computational Engineering
IF: 1.016 5-Year IF: 1.194 SJR: 0.452 SNIP: 0.68 CiteScore™: 1.18

ISSN Print: 1543-1649
ISSN Online: 1940-4352

International Journal for Multiscale Computational Engineering

DOI: 10.1615/IntJMultCompEng.v2.i2.70
15 pages

A Virtual Atom Cluster Approach to the Mechanics of Nanostructures

Dong Qian
Department of Mechanical, Industrial and Nuclear Engineering University of Cincinnati, Cincinnati, OH 45221-0072
Rohit H. Gondhalekar
Department of Mechanical, Industrial and Nuclear Engineering University of Cincinnati, Cincinnati, OH 45221-0072

ABSTRACT

A virtual atom cluster (VAC) model that represents the effect of interatomic bonding is developed as the constitutive model for crystal systems. In contrast with the crystal elasticity model, the proposed VAC model is distinguished by the following features: i) It does not build any constitutive relations that involve any stress concept, and ii) it does not use the homogeneous deformation assumption, or equivalently, the Born hypothesis. As a consequence of these attributes, the energy density of the system is embedded in the VAC model and directly related to the deformation mapping. The deformation mapping is constructed through the use of meshfree or finite element shape functions. The high-order continuity property of the meshfree shape functions guarantees the accuracy in describing the geometry and thus the energy of the atomic bond. The resulting formulation computationally more efficient than the continuum-based approach. Finally, the robustness of the method is illustrated through example problems involving various nanostructures.


Articles with similar content:

Adiabatic Shear Band Localizations in BCC Metals at High Strain Rates and Various Initial Temperatures
International Journal for Multiscale Computational Engineering, Vol.5, 2007, issue 3-4
Farid H. Abed, George Voyiadjis
A Constitutive Model for Nanomaterials Based on Spatial Secant
International Journal for Multiscale Computational Engineering, Vol.4, 2006, issue 1
Dong Qian, Rohit H. Gondhalekar
MULTISCALE MODEL FOR DAMAGE-FLUID FLOW IN FRACTURED POROUS MEDIA
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 4
Mahdad Eghbalian, Richard Wan
COMPARISON OF MULTIRESOLUTION CONTINUUM THEORY AND NONLOCAL DAMAGE MODEL FOR USE IN SIMULATION OF MANUFACTURING PROCESSES
International Journal for Multiscale Computational Engineering, Vol.14, 2016, issue 1
Hao Qin, Lars-Erik Lindgren, Olufunminiyi Abiri
AN OVERVIEW OF NONINTRUSIVE CHARACTERIZATION, PROPAGATION, AND SENSITIVITY ANALYSIS OF UNCERTAINTIES IN COMPUTATIONAL MECHANICS
International Journal for Uncertainty Quantification, Vol.4, 2014, issue 5
Jean-Philippe Ponthot, Maarten Arnst