Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Computational Thermal Sciences: An International Journal
ESCI SJR: 0.249 SNIP: 0.434 CiteScore™: 0.7

ISSN Print: 1940-2503
ISSN Online: 1940-2554

Computational Thermal Sciences: An International Journal

DOI: 10.1615/ComputThermalScien.2012005475
pages 201-211

DOUBLE DIFFUSION MIXED CONVECTION IN AN AXISYMMETRIC STAGNATION FLOW OF A NANOFLUID OVER A VERTICAL CYLINDER

M. Modather M. Abdou
Department of Mathematics, Faculty of Science Aswan, South Valley University, Aswan, Egypt; Department of Mathematics, College of Science and Humanity Studies, Salman Bin AbdulAziz University, Al-Kharj, KSA
Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates, 10021

ABSTRACT

The effect of double diffusion on mixed convection of a viscous incompressible in an axisymmetric stagnation flow of nanofluid past a vertical cylinder with constant or variable thermal wall condition is analyzed. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing equations are transformed into dimensionless form using the stream function and suitable variables. The transformed equations are then solved numerically using the Runge-Kutta numerical integration procedure in conjunction with the shooting technique. A parametric study of the physical parameters is conducted, and a representative set of numerical results for the velocity, temperature, and nanoparticles volume fraction profiles as well as the local friction factor, and the local Nusselt and Sherwood numbers, are illustrated graphically to show interesting features of the solutions.