Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Computational Thermal Sciences: An International Journal
ESCI SJR: 0.249 SNIP: 0.434 CiteScore™: 1.4

ISSN Print: 1940-2503
ISSN Online: 1940-2554

Computational Thermal Sciences: An International Journal

DOI: 10.1615/ComputThermalScien.2012004055
pages 159-168

NATURAL CONVECTION IN A NANOFLUID-FILLED SQUARE CAVITY WITH AN ARC-SHAPED HEATED BAFFLE

Ali Akbar Abbasian Arani
Mechanical Engineering Departement, University of Kashan, Kashan, Iran
Ehsan Roohi
Mechanical Engineering Departement, University of Kashan, Kashan, Iran

ABSTRACT

Buoyancy driven natural convection in a nanofluid-filled square cavity induced by an arc-shaped heated baffle is analyzed numerically. Upper and bottom walls of the cavity are insulated and the remaining two walls have constant temperature; their values are lower than the baffle's temperature. The calculations were performed for various values of Rayleigh number (104 « (Ra) « 106) dimensionless arc length (0.25 « S « 0.75), shape parameter of the baffle (π/4 « Θ « π), types of nanoparticles (Cu, Al2O3) in a wide range of solid volume fraction of nanoparticles (0 « φ « 0.15). It is found that the net heat transfer can be enhanced by increasing the Rayleigh number, baffle length, and shape parameter. As the baffle length is increased for a fixed Rayleigh number, the average Nusselt number increases and for a fixed baffle length when the Rayleigh numbers are increased, the average Nusselt number also increases. The addition of copper and alumina Nanoparticles has produced a remarkable enhancement of the heat transfer. The average Nusselt number increases with increasing solid volume fraction of nanoparticles, especially at low Rayleigh numbers. Adding Al2 O3 increases the heat transfer rate but the influence of adding Cu nanoparticles to pure water on the heat transfer rate is much more pronounced because of its higher value of thermal conductivity compared to Al2O3. The difference in the average Nusselt number using different nanoparticles is negligible at low solid volume fractions, but as the volume fraction of nanoparticles increases, the difference for the mean Nusselt number becomes larger. This is similar to results which were obtained by other authors.


Articles with similar content:

HEAT TRANSFER ENHANCEMENT OF UNIFORMLY/LINEARLY HEATED SIDE WALL IN A SQUARE ENCLOSURE UTILIZING ALUMINA−WATER NANOFLUID
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 3
Senthil Kumar Arumugam, Sathiyamoorthy Murugesan, Ali J. Chamkha, Saritha Natesan
NATURAL CONVECTION IN NANOFLUID-FILLED SQUARE CHAMBERS SUBJECTED TO LINEAR HEATING ON BOTH SIDES: A NUMERICAL STUDY
Heat Transfer Research, Vol.48, 2017, issue 9
S. Mazrouei Sebdani, P. Tajik, Ali Akbar Abbasian Arani, Mostafa Mahmoodi
MHD MIXED CONVECTION IN TRAPEZOIDAL ENCLOSURES FILLED WITH MICROPOLAR NANOFLUIDS
Nanoscience and Technology: An International Journal, Vol.9, 2018, issue 4
Sameh Elsayed Ahmed, Xiaohui Zhang, Zehba A. Raizah, M. A. Mansour, Ahmed Kadhim Hussein
NUMERICAL STUDY OF THE EFFECT OF A NANOFLUID WITH NANOPARTICLES OF NONUNIFORM SIZE ON NATURAL CONVECTION IN AN INCLINED ENCLOSURE
Nanoscience and Technology: An International Journal, Vol.8, 2017, issue 4
Sina Niazi, Mehrdad Naderi Beni
NUMERICAL STUDY OF NATURAL CONVECTION HEAT TRANSFER OF NANOFLUIDS IN PARTIALLY HEATED SEMI-ANNULI
Computational Thermal Sciences: An International Journal, Vol.6, 2014, issue 3
Antonio Campo, Nader Ben-Cheikh, Brahim Ben-Beya, Sonia Bezi