Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Computational Thermal Sciences: An International Journal
ESCI SJR: 0.249 SNIP: 0.434 CiteScore™: 0.7

ISSN Print: 1940-2503
ISSN Online: 1940-2554

Computational Thermal Sciences: An International Journal

DOI: 10.1615/ComputThermalScien.v2.i2.20
pages 111-123

INFLUENCE OF DUST ON THE HEAT TRANSFER IN A FIXED BED REACTOR

Hans Haering
University of Technology Dresden
B. Weiss
Siemens VAI Metals Technologies GmbH & Co., Turmstrasse 44, P.O. Box 4, A-4031 Linz, Austria
Franz Winter
Institute of Chemical Engineering, Christian Doppler Laboratory for Chemical Engineering at High Temperatures Vienna University of Technology, Getreidemarkt 9/166, A-1060 Vienna, Austria
R. Lange
Institute of Process Engineering and Environmental Technology, Dresden University of Technology, Miinchner Platz 3, D-01062 Dresden, Germany
Georg Aichinger
Siemens VAI Metals Technologies GmbH & Co, Turmstrasse 44, P. O. Box 4, A-4031 Linz, Austria
J. Wurm
Siemens VAI Metals Technologies GmbH & Co, Turmstrasse 44, P. O. Box 4, A-4031 Linz, Austria

ABSTRACT

This investigation focuses on the influence of dust on heat transfer in a fixed bed reactor. Industrial application shows that the heat transfer with dust is significantly smaller than without dust. To determine the reason for this effect, a laboratory-scale fixed bed reactor was built and transient temperature profiles measured at different positions in the fixed bed. In the experimental study, a three-phase system (solid, solid, gas) including dust is compared with a two-phase system (solid, gas) for three different bed materials, such as mono- and polydisperse solid iron spheres, direct reduced iron ore, and char particles. The measured data were evaluated by using a modified two-phase model with separate heat balances for a pseudohomogenous solid and a gas phase which were solved by analytical approximation and a numerical method using a commercial program, Aspen Custom Modeler. For determination of the heat-transfer coefficients, parameter estimation was done using the internal program Nelder Mead algorithm. The results were compared with established correlations and data from literature and show significant influence of dust on the heat-transfer rates due to channeling effects caused by local dust accumulation. Due to particle size distribution and different specific surfaces, the reduction of the gas-solid heat-transfer coefficient for char and direct reduced iron ore is less pronounced than for mono- and polydisperse solid iron spheres. The heat-transfer coefficient decreases to 6% in comparison with the results without dust.

REFERENCES

  1. Bauer, M., Theoretische und Experimentelle Untersuchungen zum Wärmetransport in Gasdurchströmten Festbettreaktoren.

  2. Bauer, R. and Schlunder, E. U., Die effektive Wärmeleitfähigkeit gasdurchströmter Schüttungen.

  3. Beutler, R., Ein instationares Verfahren zur Bestimmung des Wärmedurchgangskoeffizienten in durchströmten Schüttungen.

  4. Bogdandy, L. and Engell, H. J., Die Reduktion der Eisenerze, Wissenschaftliche Grundlagen und technische Durchführung.

  5. Borkink, J. G. H. and Westerterp, K. R., Significance of the radial porosity profile for the description of heat transfer in wall cooled packed beds.

  6. Dixon, A. G. and Labua, L. A., Wall to fluid coefficients for fixed bed heat and mass transfer.

  7. Farber, P., Eine Untersuchung des Wärmetransportes im Inneren einer durchströmten Kugelschüttung bei Temperaturen bis 1100 °C.

  8. Fuentes, J., Pironti, F., and Lopez de Ramos, A. L., Effective thermal conductivity in a radial-flow packed-bed reactor.

  9. Giese, M., Strömung in porösen Medien unter Berücksichtigung effektiver Viskositäten.

  10. Gnielinski, V., Berechnung des Warme und Stoffaustausches in durchstromten ruhenden Schuttungen.

  11. Hatano, M. and Kurita, K., A mathematical model of blast furnace considering radial distribution of gas flow, heat transfer and reactions considered.

  12. Hausmann, Ò., Einfluss der Partikelporosität auf den Wärmetransport in einem gasdurchströmten Festbett.

  13. Kohne, H., Zum Wärmetransport in einer durchströmten Kugelschüttung bei Temperaturen bis 1100°C.

  14. Martin, H., Low Peclet number particle-to-fluid heat and mass transfer in packed beds.

  15. Nilles, M., Wärmeübertragung an der Wand durchströmter Schüttungsrohre.

  16. Schlunder, E. U. and Tsotsas, E., Wärmeübertragung in Festbetten, durchmischten Schüttgütern und Wirbelschichten.

  17. Tsotsas, E., Über die Wärme- und Stoffübertragung in durchstromten Festbetten: Experimente, Modelle, Theorien.

  18. VDI Warmeatlas, Wörmeübergang und Strömung in Verfahrenstechnik und Chemie.

  19. Vortmeyer, D., Wärmeleitung in Schüttungen.


Articles with similar content:

INFLUENCE OF DUST ON THE HEAT TRANSFER IN A FIXED BED REACTOR
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Franz Winter, R. Lange, B. Weiss, Hans Haering, J. Wurm, Georg Aichinger
COMPARISON OF BUNDLE EFFECT DURING FLOW BOILING OF DISTILLED WATER OVER PLAIN AND PLASMA COATED TUBE BUNDLES
International Heat Transfer Conference 16, Vol.4, 2018, issue
Mihir Kumar Das, Rajiva Lochan Mohanty, Abhilas Swain
SIMULATION STUDY OF THE ADSORPTION DYNAMICS OF CYLINDRICAL SILICA GEL PARTICLES
Heat Transfer Research, Vol.46, 2015, issue 2
Seung Taek Oh, S Mitra, Pradip Dutta, Bidyut Baran Saha, K. Srinivasan
Mathematical Modeling of Heat Transfer to a Cylindrical Solid Immersed in a Fluidized Bed of Small Particles
Journal of Porous Media, Vol.12, 2009, issue 4
N. Malekinejad, Mohammad S. Hatamipour, M. Ashtari
Heat transfer in calcium chloride reactor bed for chemical heat pumps
International Heat Transfer Conference 12, Vol.55, 2002, issue
Yushi Hirata, Keiko Fujioka