Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays
IF: 1.189 5-Year IF: 1.596 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2015011076
pages 453-483

EFFECTS OF NONCONDENSABLE GAS ON CAVITATING NOZZLES

Michele Battistoni
Energy Systems Division, Argonne National Laboratory, Argonne, IL; Department of Engineering, University of Perugia, Italy
Daniel Duke
Argonne National Laboratory
Andrew B. Swantek
Energy Systems Division, Argonne National Laboratory, Argonne, Illinois 60439 USA
F. Zak Tilocco
Energy Systems Division, Argonne National Laboratory, Argonne, Illinois 60439 USA
Christopher F. Powell
Energy Systems Division, Argonne National Laboratory, Argonne, Illinois 60439 USA
Sibendu Som
Energy Systems Division, Argonne National Laboratory, Argonne, Illinois, 60439, USA

ABSTRACT

This paper focuses on the analysis of low-pressure regions inside fuel injector nozzles, where fuel vapor formation (strictly referred to as cavitation, or vaporous cavitation) and expansion of noncondensable gas (also referred to as pseudo cavitation, or gaseous cavitation) can simultaneously occur. Recently, X-ray radiography experiments of a 500 µm diameter cavitating nozzle showed that the presence of dissolved gas in the fuel can cause significant changes in the apparent distribution of projected void fraction. In this article, the effect of dissolved gas on cavitation measurements is investigated in further detail through experimentation and numerical simulations. Test conditions have been selected to have highly cavitating conditions. Tests with a standard gasoline calibration fluid and equivalent degassed fluid are compared and discussed. Numerical simulations have been conducted under the same conditions as the radiography experiments. The primary goal of the study is a quantification of the separate contributions of gas expansion as opposed to actual cavitation to the measurement of total void fraction. The multiphase flow is represented using a mixture model. Phase change is modeled via the homogeneous relaxation model. Particular attention is paid to quantifying the effective amount of noncondensable gas included in the mixture, in order to predict the response of regular and degassed fuels. The presence of dissolved gas in the multiphase flow is taken into account using a compressible fluid model with three distinct components (liquid, vapor, and gas). Issues surrounding estimation of the effective amount of noncondensable gas are discussed. Numerical simulation results match well with the experiments and indicate that when a sufficient quantity of gas is dissolved in the fuel, a void is evident in the central region of the channel that can be attributed to local expansion of noncondensed gas. Conversely, degassed fuel shows only intense cavitation at the nozzle wall, with very little contribution from noncondensed gas.