Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays
IF: 1.189 5-Year IF: 1.596 SJR: 0.814 SNIP: 1.18 CiteScore™: 1.6

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2018025001
pages 65-89


Camille Bilger
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom
R. Stewart Cant
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom


High-fidelity numerical simulations of spray formation were conducted with the aim of improving fundamental understanding of airblast liquid-film atomization. The gas/liquid interaction in the near-nozzle region is investigated for a multitude of operating conditions in order to extrapolate phenomenological and breakup predictions. To reach this goal, the robust conservative level-set (RCLS) method was used. For a fixed prefilmer geometry, we performed a parametric study on the impact of various liquid and gas velocities on the topological evolution of the liquid interface. The behavior and development of the liquid film is found to be influenced mainly by the relative inertia of the gas and the liquid, the liquid surface tension, and interfacial shear stresses. Preliminary regime maps predicting the prefilming liquid-sheet atomization behavior are constructed based on our numerical results. Three distinct types of "regime" are reported: accumulation, ligament-merging, and three-dimensional wave mode. In addition, these results also show the influence of vortex action and rim-driven dynamics on the breakup mechanism at the atomizer edge. An increase in liquid injection speed leads to the generation of smaller droplets; whereas, an increase in air velocity does not point to one simple conclusion.