Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays
IF: 1.737 5-Year IF: 1.518 SJR: 0.814 SNIP: 1.18 CiteScore™: 2.2

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volume 30, 2020 Volume 29, 2019 Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v20.i6.50
pages 553-564

EXPERIMENTAL APPROACHES TO INVESTIGATING LIQUEFIED LPG SPRAY CHARACTERISTICS

Ki-Bum Kim
School of Mechanical Engineering, Chungbuk National University, 52 Naesudong-ro, Heungdeok-gu, Chungju, Chungbuk, 361-763, Republic of Korea
Yung-Jin Kim
Department of Mechanical Engineering, Hanyang University, 1271 Sa 1-dong, Sangnok-gu, Ansan-si, Gyeonggi-do, 426-791, Korea
Ki-Hyung Lee
Department of Mechanical Engineering, Hanyang University, 1271 Sal-dong, Sangrok-gu, Gyeonggi-do 426-791, Korea
Kwan-Soo Lee
Hanyang University

ABSTRACT

Liquefied petroleum gas (LPG) has been used as an automotive fuel due to its advantages of low cost and low emissions. Vaporizer-type LPG engines were prevalent in the past, but new injection systems directly injecting liquid-phase fuel into the intake port are being pursued to improve engine performance, charging efficiency, and cold start capability. Because liquid-phase LPG behaves somewhat differently from conventional liquid fuels, it is necessary to understand the spray characteristics and evaporating processes of the LPG for developing more efficient and lower emission LPG engines. With this goal in mind, an analysis of LPG spray injecting from a single injector was carried out. First, the LPG injection quantity was measured for four different injection pressures. Spray visualization experiments were then performed under atmospheric pressure to investigate how varying injection pressures affect the spray characteristics. The spray images show that LPG spray penetration length decreases with higher injection pressure. In addition, the higher injection pressure promotes fuel atomization, resulting in enhanced vaporization of the fuel. The results were validated using an optical line patternator, providing measured data in terms of a surface area per unit volume along the stream of the LPG spray, and they were in excellent agreement with the results obtained from the patternator. Elastic light-scattering technique was used to measure the spray droplet size as well. These results are surely expected to provide valuable information on macroscopic spray structure and design factors for developing liquid-phase LPG injectors and engines.


Articles with similar content:

EFFECT OF ETHANOL AND AMBIENT PRESSURE ON PORT-FUEL-INJECTION SPRAYS IN AN OPTICALLY ACCESSIBLE INTAKE CHAMBER
Atomization and Sprays, Vol.21, 2011, issue 5
Evatt R. Hawkes, Srinivas Padala, Sanghoon Kook
TIME-RESOLVED X-RAY RADIOGRAPHY OF SPRAYS FROM ENGINE COMBUSTION NETWORK SPRAY A DIESEL INJECTORS
Atomization and Sprays, Vol.24, 2014, issue 3
Xusheng Zhang, Daniel Duke, Alan L. Kastengren, Christopher F. Powell, F. Zak Tilocco, Seoksu Moon
THE EFFECT OF FUEL PROPERTIES ON THE START OF INJECTION AND ENERGY RELEASE OF A COMPRESSION IGNITION ENGINE FUELED ON DIMETHYL ETHER
International Journal of Energy for a Clean Environment, Vol.11, 2010, issue 1-4
Daniele Cipolat
AN EXPERIMENT STUDY ON PHENOMENON AND MECHANISM OF FLASH BOILING SPRAY FROM A MULTI-HOLE GASOLINE DIRECT INJECTOR
Atomization and Sprays, Vol.23, 2013, issue 5
Shenghua Yang, Zhiping Song, Zhuo Yao, Tianyou Wang
CHARACTERIZATION OF HIGH-INJECTION-PRESSURE DIESEL SPRAYS WITH RELATION TO PARTICULATE AND NOx EMISSIONS
Atomization and Sprays, Vol.8, 1998, issue 1
T. F. Su, Patrick V. Farrell