Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays
CiteScore™: 1.6 IF: 1.189 5-Year IF: 1.596 SNIP: 1.18 SJR: 0.814

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volume 28, 2018 Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2013007439
pages 957-980

TOWARD USING DIRECT NUMERICAL SIMULATION TO IMPROVE PRIMARY BREAK-UP MODELING

Francois-Xavier Demoulin
CORIA UMR 6614, University of Rouen, Technopole du Madrillet, BP 12, 76801 Saint-Etienne-du-Rouvray Cedex, France
Julien Reveillon
CORIA UMR 6614, University of Rouen, Technopole du Madrillet, BP 12, 76801 Saint-Etienne-du-Rouvray Cedex, France
Bernard Duret
UMR6614-CORIA, Technopole du Madrillet, BP 12, Avenue de l'Universite, 76801 Saint-Etienne du Rouvray Cedex, France
Zakaria Bouali
UMR 6614 CNRS CORIA, Rouen University, bp 12−Site universitaire du Madrillet, 76801 St Etienne du Rouvray, France
P. Desjonqueres
UMR 6614 CNRS CORIA, Rouen University, bp 12−Site universitaire du Madrillet, 76801 St Etienne du Rouvray, France
Thibaut Menard
CNRS, CORIA UMR 6614, University of Rouen, Technopole du Madrillet, BP 12, 76801 Saint- Etienne-du-Rouvray Cedex, France

ABSTRACT

This paper focuses on the use of direct numerical simulation (DNS) in the context of spray atomization modeling. Key features of such liquid/gas simulations, which are necessary for confidence in model accuracy, are recalled and discussed together with their inherent limitations. Particular attention is given to the lack of theories relating to the determination of the smallest length scale in turbulent liquid-gas flows. To demonstrate how direct numerical simulation can serve modeling purposes, this paper discusses three major areas of possible applications of DNS. First, DNS databases were created to validate modeling approaches inflow areas where no experimental measurements are available. In this paper, this approach is applied to diesel injection conditions to validate the Eulerian−Lagrangian spray atomization (ELSA) model. Second, because models are necessary to mitigate computational costs, which constitute the main drawback of DNS, this paper proposes the development of a large eddy simulation formulation of the liquid atomization, thereby enabling results that are no longer mesh resolution dependent. Finally, once the large scale is correctly captured, it is necessary to ensure an accurate representation of the liquid structure falling below the subgrid scale. To this end, a source term for the surface density equation is established based on direct numerical simulations of liquid-gas flows embedded in an isotropic turbulence and covering both dense and moderately dense ranges.