Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays

Impact factor: 1.235

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.2013007155
pages 487-503

BREAKING THE RAYLEIGH-PLATEAU INSTABILITY LIMIT USING THERMOCAVITATION WITHIN A DROPLET

J. P. Padilla-Martinez
Departamento de Optica, Instituto Nacional de AstrofIsica, Optica y Electronica, Puebla, Pue. 7200, México
J. C. Ramirez-San-Juan
Departamento de Optica, Instituto Nacional de AstrofIsica, Optica y Electronica, Puebla, Pue. 7200, México
N. Korneev
Departamento de Optica, Instituto Nacional de AstrofIsica, Optica y Electronica, Puebla, Pue. 7200, México
Darren Banks
Department of Mechanical Engineering, University of California-Riverside, Riverside, California 92521, USA
Guillermo Aguilar
Department of Mechanical Engineering, University of California-Riverside, Riverside, California 92507, USA
Ruben Ramos-Garcia
Departamento de Optica, Instituto Nacional de AstrofIsica, Optica y Electronica, Puebla, Pue. 7200, México

ABSTRACT

We report on the generation of liquid columns that extend far beyond the traditional Rayleigh-Plateau instability onset. The columns are driven by the acoustic pressure wave emitted after bubble collapse. A high-speed video imaging device, which records images at a rate of up to 105 fps, was employed to follow their dynamics. These bubbles, commonly termed thermocavitation bubbles, are generated by focusing a midpower (275 mW) continuous wavelength laser into a highly absorbing liquid droplet. A simple model of the propagation of the pressure wavefront emitted after the bubble collapse shows that focusing the pressure wave at the liquid–air interface drives the evolution of the liquid columns. Control over the aspect ratio of the liquid column is realized by adjusting the cavitation bubble's size, beam focus position, and droplet volume.