Library Subscription: Guest
Home Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays

Impact factor: 0.781

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v20.i4.50
pages 337-343


Elias Kristensson
Division of Combustion Physics, Department of Physics, Lund University, Lund
Mattias Richter
Division of Combustion Physics, Department of Physics, Lund University, Lund
Marcus Alden
Division of Combustion Physics, Department of Physics, Lund University, Lund


Recently, a novel laser imaging technique, structured laser illumination planar imaging (SLIPI), has demonstrated great potential for suppressing multiply scattered light in spray imaging. SLIPI uses a laser sheet whose intensity is modulated in the spatial domain. Directly scattered photons keep this structural information; whereas, photons that experienced several scattering events lose this information. Using a spatially modulated light source thus enables directly scattered photons to be distinguished from the multiple-scattering contribution. To homogeneously illuminate the spray, three images are required, where the intensity modulation is successively shifted vertically one third of a period. By adequately postprocessing these images, the multiple-scattering contribution is diminished. However, the time interval within which these images are recorded must be short enough to freeze the flow motion, making single-shot SLIPI of highly atomizing sprays particularly challenging. In this article, a nanosecond SLIPI system capable of freezing flow motions up to ∼600 m/s is presented. The instrument was tested on a hollow-cone water spray, running at an injection pressure of up to 50 bars, and high-resolution single-shot images, in which multiple-scattering effects were efficiently suppressed, were obtained. Such images provide detailed information of complex dynamic flow behavior occurring in the dense spray region, e.g., primary and secondary breakups. In addition, it is demonstrated how the liquid sheet length can be estimated by extracting the rmsfrom such single-shot SLIPI images.