Library Subscription: Guest
Begell Digital Portal Begell Digital Library eBooks Journals References & Proceedings Research Collections
Atomization and Sprays

Impact factor: 1.235

ISSN Print: 1044-5110
ISSN Online: 1936-2684

Volumes:
Volume 27, 2017 Volume 26, 2016 Volume 25, 2015 Volume 24, 2014 Volume 23, 2013 Volume 22, 2012 Volume 21, 2011 Volume 20, 2010 Volume 19, 2009 Volume 18, 2008 Volume 17, 2007 Volume 16, 2006 Volume 15, 2005 Volume 14, 2004 Volume 13, 2003 Volume 12, 2002 Volume 11, 2001 Volume 10, 2000 Volume 9, 1999 Volume 8, 1998 Volume 7, 1997 Volume 6, 1996 Volume 5, 1995 Volume 4, 1994 Volume 3, 1993 Volume 2, 1992 Volume 1, 1991

Atomization and Sprays

DOI: 10.1615/AtomizSpr.v16.i5.70
pages 579-598

STRUCTURE OF HIGH-VELOCITY DENSE SPRAYS IN THE NEAR-NOZZLE REGION

Franz X. Tanner
Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA
Kathleen A. Feigl
Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA
Steve A.. Ciatti
Center for Transportation Research, Argonne National Laboratory, Argonne, Illinois 60439-4815, USA
Christopher F. Powell
Energy Systems Division, Argonne National Laboratory, Argonne, Illinois 60439 USA
S.-K. Cheong
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439-4815, USA
J. Liu
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439-4815, USA
Jinn-Chyi Wang
Department of Food Science and Technology, Tajen University, Pingtung, Taiwan

ABSTRACT

Optical and X-ray spray measurements may yield different results when similar quantities are measured. Computer simulations were used to reconcile such differences in the near-nozzle region for high-velocity, dense fuel sprays injected into nitrogen at various gas pressures. It was found that the near-nozzle region consists of a dense core around the spray axis, which contains the majority of the liquid mass, and its radial expansion is not very sensitive with respect to changes in the gas pressure. The remaining liquid mass forms a dilute region away from the spray center; it is responsible for the formation of the optical spray angle and hence varies with the gas pressure according to the known experimental correlations. Further, injection pressure variations of sprays into SF6 gas showed that the radial expansion of the dense core and the dilute periphery are independent of the injection pressure.